APPENDIX E

MULTIVARIATE GAUSSIAN INTEGRALS

Starting from the formula

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \tag{E-1}$$

it follows that

$$\int \dots \int_{-\infty}^{\infty} dx_1 \dots dx_n \exp\left\{-\frac{1}{2} \sum_{i=1}^n a_i x_i^2\right\} = \frac{(2\pi)^{n/2}}{\sqrt{a_1 a_2 \dots a_n}} , \qquad a_i > 0 .$$
 (E-2)

Now carry out a real nonsingular linear transformation:

$$x_i = \sum_{j=1}^n B_{ij} q_j , \qquad 1 \le i \le n ,$$
 (E-3)

where $det(B) \neq 0$. Then, going into matrix notation,

$$\sum a_i x_i^2 = q^T B^T A B q = q^T M q \tag{E-4}$$

where

$$A_{ij} \equiv a_i \, \delta_{ij} \tag{E-5}$$

is a positive definite diagonal matrix. The volume element transforms according to the Jacobian rule

$$dx_1 \dots dx_n = |\det(B)| dq_1 \dots dq_n \tag{E-6}$$

and

$$\det(M) = \det(B^T A B) = [\det(B)]^2 \det(A). \tag{E-7}$$

The matrix M is by definition real, symmetric, and positive definite; and by proper choice of A, B any such matrix may be generated in this way. The integral (E-2) may then be written as

$$\int \dots \int \exp\left\{-\frac{1}{2} q^T M q\right\} |\det(B)| dq_1 \dots dq_n$$
 (E-8)

and so the general multivariate Gaussian integral is

$$I = \int \dots \int \exp[-\frac{1}{2} q^T M q] dq_1 \dots dq_n = \frac{(2\pi)^{n/2}}{\sqrt{\det(M)}}.$$
 (E-9)

Partial Gaussian Integrals. Suppose we don't want to integrate over all the $\{q_1 \dots q_n\}$, but only the last r = n - m of them;

$$I_m \equiv \int \dots \int \exp\left\{-\frac{1}{2} q^T M q\right\} dq_{m+1} \dots dq_n$$
 (E-10)

 2 2

to do this, break M down into submatrices

$$M = \begin{pmatrix} U_0 & V \\ V^T & W_0 \end{pmatrix} \tag{E-11}$$

and likewise separate the vector q in the same way:

$$q = \begin{pmatrix} u \\ w \end{pmatrix} . \tag{E-12}$$

 $q=\begin{pmatrix}u\\w\end{pmatrix}\;.$ by writing $\{q_1=u_1,\dots,q_m=u_m\}$ and $\{q_{m+1}=w_1,\dots,q_n=w_r\}.$ Then

$$Mq = \begin{pmatrix} U_0 & V \\ V^T & W_0 \end{pmatrix} \begin{pmatrix} u \\ w \end{pmatrix} \tag{E-13}$$

and

$$q^{T}Mq = u^{T}U_{0}u + u^{T}Vw + w^{T}V^{T}u + w^{T}W_{0}w$$
 (E-14)

so that I_m becomes

$$I_{m} = \exp\left(-\frac{1}{2}u^{T}U_{0}u\right) \int \dots \int \exp\left\{-\frac{1}{2}\left[w^{T}W_{0}w + u^{T}Vw + w^{T}V^{T}u\right]\right\} dw_{1} \dots dw_{r} \quad \text{(E-15)}$$

To prepare to integrate out w, first complete the square on w by writing the exponent as

$$[] = (w - \hat{w})^T W_0 (w - \hat{w}) + C$$

and equate terms in (E-14) and (E-16) to find \hat{w} and C :

$$w^{T}Ww + u^{T}Vw + w^{T}V^{T}u = w^{T}W_{0}w - \hat{w}^{T}W_{0}w - w^{T}W_{0}\hat{w} + \hat{w}^{T}W_{0}\hat{w} + C$$
 (E-17)

This requires (since it must be an identity in w):

$$u^T V = -\hat{w}^T W_0 \tag{E-18}$$

$$V^T u = -W_0 \hat{w} \tag{E-19}$$

$$\hat{w}^T W_0 w + C = 0 \tag{E-20}$$

or,

$$\hat{w} = -W_0^{-1} V^T u (E-21)$$

$$C = -(u^{T}VW_{0}^{-1})W_{0}(W_{0}^{-1}V^{T}u) = u^{T}VW_{0}^{-1}V^{T}u$$
(E-22)

Then I_m becomes

$$I_m = e^{-\frac{1}{2}(u^T U_0 u + C)} \int \dots \int \exp\left\{-\frac{1}{2}(w - \hat{w})^T W_0 (w - \hat{w})\right\} dw_1 \dots dw_r.$$
 (E-23)

But by (E-9) this integral is

$$\frac{(2\pi)^{r/2}}{\sqrt{\det(W_0)}}\tag{E-24}$$

and from (E-18)

$$u^T U_0 u + C = u^T [U_0 - V W_0^{-1} V^T] u \ . \tag{E-25}$$
 The general partial Gaussian integral is therefore

$$I_m = \int \dots \int \exp\left[-\frac{1}{2} q^T M q\right] dq_{m+1} \dots dq_n = \frac{(2\pi)^{\frac{n-m}{2}}}{\sqrt{\det(W_0)}} \exp\left\{-\frac{1}{2} u^T U u\right\}$$
 (E-26)

where

$$U \equiv U_0 - VW_0^{-1}V^T \tag{E-27}$$

 $U\equiv U_0-VW_0^{-1}V^T$ is a "renormalized" version of the first $(m\times m)$ block of the original matrix M.

This result has a simple intuitive meaning in application to probability theory. The original $(n \times 1)$ vector q is composed of an $(m \times 1)$ vector u of "interesting" quantities that we wish to estimate, and an $(r \times 1)$ vector w of "uninteresting" quantities or "nuisance parameters" that we want to eliminate. Then U_0 represents the inverse covariance matrix in the subspace of the interesting quantities, W_0 is the corresponding matrix in the "uninteresting" subspace, and V represents an "interaction", or correlation, between them.

It is clear from (E-27) that if V=0, then $U=U_0$, and the pdf's for u and w are independent. Our estimates of u are then the same whether or not we integrate w out of the problem. But if $V \neq 0$, then the renormalized matrix U contains effects of the nuisance parameters. Two components, u_1 and u_2 , that were uncorrelated in the original M^{-1} may become correlated in U^{-1} due to their common interactions (correlations) with the nuisance parameters w.

Inversion of a Block Form matrix. The matrix U has another simple meaning, which we see when we try to invert the full matrix M. Given an $(n \times n)$ matrix in block form

$$M = \begin{pmatrix} U_0 & V \\ X & W_0 \end{pmatrix} \tag{E-28}$$

where U_0 is an $m \times m$ submatrix, and W_0 is $(r \times r)$ with m + r = n, try to write M^{-1} in the same block form:

$$M^{-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \tag{E-29}$$

Writing out the equation $MM^{-1} = 1$ in full, we have four relations of the form $U_0A + VC =$ 1, $U_0B + VD = 0$, etc. If U_0 and W_0 are nonsingular, there is a unique solution for A, B, C, Dwith the result

$$M^{-1} = \begin{pmatrix} U^{-1} & -U_0^{-1}VW^{-1} \\ -W_0^{-1}XU^{-1} & W^{-1} \end{pmatrix}$$
 (E-30)

where

$$U \equiv U_0 - V W_0^{-1} X \tag{E-31}$$

$$W \equiv W_0 - X U_0^{-1} V \tag{E-32}$$

 $W\equiv W_0-XU_0^{-1}V \eqno({\rm E}\mbox{-}32)$ are "renormalized" forms of the diagonal blocks. Conversely, (E=30) can be verified by direct substitution into $MM^{-1} = 1$ or $M^{-1}M = 1$. If M is symmetric as it was above, then $X = V^T$.

Another useful and nonobvious relation is found by integrating u out of (E-26). On the one hand we have from (E-9),

$$\int \cdots \int \exp\left\{-\frac{1}{2} u^T U u\right\} du_1 \cdots du_m = \frac{(2\pi)^{m/2}}{\sqrt{\det(U)}}$$
 ((E-33)

but on the other hand, if we integrate $\{u_1 \cdots u_m\}$ out of (E-26), the final result must be the same as if we had integrated all the $\{q_1 \cdots q_n\}$ out of (E-9) directly: so (E-9), (E-26), (E-33) yield

$$\det(M) = \det(U) \det(W_0) \tag{E-34}$$

Therefore we can eliminate W_0 and write the general partial Gaussian integral as

$$\int \cdots \int \exp\left[-\frac{1}{2} q^T M q\right] dq_{m+1} \cdots dq_n = \left[\frac{(2\pi)^{n/2}}{\det(M)}\right] \left[\frac{\det(U)}{(2\pi)^{m/2}}\right] \exp\left\{-\frac{1}{2} u^T U u\right\}$$
 (E-35)