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CHAPTER 4

ELEMENTARY HYPOTHESIS TESTING

“I conceive the mind as a moving thing, and arguments as
the motive forces driving it in one direction or the other.”

— John Craig (1699)

John Craig was a Scottish mathematician, and one of the first scholars to recognize the merit in
Isaac Newton’s new invention of “the calculus”. The above sentence, written some 300 years ago
in one of the early attempts to create a mathematical model of reasoning, requires changing only
one word in order to describe our present attitude. We would like to think that our minds are
swayed not by arguments, but by evidence. And if fallible humans do not always achieve this
objectivity, our desiderata were chosen with the aim of achieving it in our robot. Therefore to see
how our robot’s mind is “driven in one direction or the other” by new evidence, we examine some
applications that, although simple mathematically, have proved to have practical importance in
several different fields.

As is clear from the basic desiderata listed in Chapter 1, the fundamental principle underlying
all probabilistic inference is:

To form a judgment about the likely truth or falsity of any proposition A,
the correct procedure is to calculate the probability that A is true:

P(A|Ey By .. (4-1)

conditional on all the evidence at hand.

In a sampling context (i.e. when A stands for some data set), this principle has seemed obvious to
everybody from the start. We used it implicitly throughout Chapter 3 without feeling any need to
state it explicitly. But when we turn to a more general context the principle needs to be stressed
because it has not been obvious to all workers (as we shall see repeatedly in later Chapters).

The essence of “honesty” or “objectivity” demands that we take into account all the evidence
we have, not just some arbitrarily chosen subset of it. Any such choice would amount either to
ignoring evidence that we have, or presuming evidence that we do not have. This leads us to
recognize at the outset that some information is always available to the robot.

Prior Probabilities

Generally, when we give the robot its current problem, we will give it also some new information or
“data” D pertaining to the specific matter at hand. But almost always the robot will have other
information which we denote, for the time being, by X. This includes, at the very least, all its past
experience, from the time it left the factory to the time it received its current problem. That is
always part of the information available, and our desiderata do not allow the robot to ignore it. If
we humans threw away what we knew yesterday in reasoning about our problems today, we would
be below the level of wild animals; we could never know more than we can learn in one day, and
education and civilization would be impossible.

So to our robot there is no such thing as an “absolute” probability; all probabilities are
necessarily conditional on X at least. In solving a problem, its inferences should, according to the
principle (4-1), take the form of calculating probabilities of the form P(A|DX). Usually, part of X
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is irrelevant to the current problem, in which case its presence is unnecessary but harmless; if it is
irrelevant, it will cancel out mathematically. Indeed, that is what we really mean by “irrelevant”.

Any probability P(A|X) that is conditional on X alone is called a prior probability. But
we caution that the term “prior” is another of those terms from the distant past that can be
inappropriate and misleading today. In the first place, it does not necessarily mean “earlier in time.”
Indeed, the very concept of time is not in our general theory (although we may of course introduce
it in a particular problem). The distinction is a purely logical one; any additional information
beyond the immediate data D of the current problem is by definition “prior information”.

For example, it has happened more than once that a scientist has gathered a mass of data,
but before getting around to the data analysis he receives some surprising new information that
completely changes his ideas of how the data should be analyzed. That surprising new information
is, logically, “prior information” because it is not part of the data. Indeed, the separation of the
totality of the evidence into two components called “data” and “prior information” is an arbitrary
choice made by us, only for our convenience in organizing a chain of inferences. Although all such
organizations must lead to the same final results if they succeed at all, some may lead to much
easier calculations than others. Therefore, we do need to consider the order in which different pieces
of information shall be taken into account in our calculations.

Because of some strange things that have been thought about prior probabilities in the past,
we point out also that it would be a big mistake to think of X as standing for some hidden major
premise, or some universally valid proposition about Nature. Old misconceptions about the origin,
nature, and proper functional use of prior probabilities are still common among those who continue
to use the archaic term “a—priori probabilities”. The term “a-priori” was introduced by Immanuel
Kant to denote a proposition whose truth can be known independently of experience; which is most
emphatically what we do not mean here. X denotes simply whatever additional information the
robot has beyond what we have chosen to call “the data”. Those who are actively familiar with the
use of prior probabilities in current real problems usually abbreviate further, and instead of saying
“the prior probability” or “the prior probability distribution”, they say simply, “the prior”.

There is no single universal rule for assigning priors — the conversion of verbal prior informa-
tion into numerical prior probabilities is an open—ended problem of logical analysis, to which we
shall return many times. At present, four fairly general principles are known — group invariance,
maximum entropy, marginalization, and coding theory — which have led to successful solutions of
many different kinds of problems. Undoubtedly, more principles are waiting to be discovered, which
will open up new areas of application.

In conventional sampling theory, the only scenario considered is essentially that of “drawing
from an urn”, and the only probabilities that arise are those that presuppose the contents of the
“urn” or the “population” already known, and seek to predict what “data” we are likely to get as
a result. Problems of this type can become arbitrarily complicated in the details, and there is a
highly developed mathematical literature dealing with them. For example, the massive two—volume
work of Feller (1951, 1971) and the weighty compendium of Kendall and Stuart (1977; Vol. 1) are
restricted entirely to the calculation of sampling distributions. These works contain hundreds of
nontrivial solutions that are useful in all parts of probability theory, and every worker in the field
should be familiar with what is available in them.

However, as noted in the last Chapter, almost all real problems of scientific inference involve us
in the opposite situation; we already know the data D, and want probability theory to help us decide
on the likely contents of the “urn”. Stated more generally, we want probability theory to indicate
which of a given set of hypotheses {Hy, Ho,...} is most likely to be true in the light of the data
and any other evidence at hand. For example, the hypotheses may be various suppositions about
the physical mechanism that is generating the data. But fundamentally, as in the last Chapter,
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physical causation is not an essential ingredient of the problem; what is essential is only that there
be some kind of logical connection between the hypotheses and the data.

To solve this problem does not require any new principles beyond the product rule (3-1) that
we used to find conditional sampling distributions; we need only to make a different choice of the
propositions. Let us now use the notation

X = Prior information
H = Some hypothesis to be tested
D = the data

and write the product rule in the form
P(DH|X) = P(D|HX) P(H|X) = P(H|DX) P(D|X). (4-2)

We recognize P(D|H X)) as the sampling distribution which we studied in Chapter 3, but now
written in a more flexible notation. In Chapter 3 we did not need to take any particular note of
the prior information X, because all probabilities were conditional on H, and so we could suppose
implicitly that the general verbal prior information defining the problem was included in H. This
is the habit of notation that we have slipped into, which has obscured the unified nature of all
inference. Throughout all of sampling theory one can get away with this, and as a result the very
term “prior information” is absent from the literature of sampling theory.

But now we are advancing to probabilities that are not conditional on H, but are still condi-
tional on X, so we need separate notations for them. We see from (4-2) that to judge the likely
truth of H in the light of the data, we need not only the sampling probability P(D|H X') but also
the prior probabilities for D and H:

P(D|HX)

P(H|DX)= P(H|X) PDIE)

(4-3)

Although the derivation (4-2) — (4-3) is only the same mathematical result as (3-43) — (3-44), it
has appeared to many workers to have a different logical status. From the start it has seemed clear
how one determines numerical values of sampling probabilities, but not what determines the prior
probabilities. In the present work we shall see that this was only an artifact of an unsymmetrical way
of formulating problems, which left them ill-posed. One could see clearly how to assign sampling
probabilities because the hypothesis H was stated very specifically; had the prior information X
been specified equally well, it would have been equally clear how to assign prior probabilities.

When we look at these problems on a sufficiently fundamental level and realize how careful one
must be to specify the prior information before we have a well-posed problem, it becomes evident
that there is in fact no logical difference between (3-44) and (4-3); exactly the same principles
are needed to assign either sampling probabilities or prior probabilities, and one man’s sampling
probability is another man’s prior probability.

The left-hand side of (4-3), P(H|DX), is generally called a “posterior probability”, with the
same caveal that this means only “logically later in the particular chain of inference being made”,
and not necessarily “later in time”. And again the distinction is conventional, not fundamental;
one man’s prior probability is another man’s posterior probability. There is really only one kind of
probability; our different names for them refer only to a particular way of organizing a calculation.

The last factor in (4-3) also needs a name, and it is called the likelihood L(H ). To explain
current usage, we may consider a fixed hypothesis and its implications for different data sets; as we
have noted before, the term P(D|H X ), in its dependence on D for fixed H, is called the “sampling
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distribution”. But we may consider a fixed data set in the light of various different hypotheses
{H, H',---}; in its dependence on H for fixed D, P(D|H X ) is called the “likelihood”.

A likelihood L(H) is not itself a probability for H; it is a factor which when multiplied by a
prior probability and a normalization factor may become a probability. Because of this, constant
factors are irrelevant, and may be struck out. Thus the quantity L(H;) = y(D)P(D|H;X) is
equally deserving to be called the likelihood, where y is any positive number which may depend on
D but is independent of the hypotheses {H;}.

Equation (4-3) is then the fundamental principle underlying a wide class of scientific inferences
in which we try to draw conclusions from data. Whether we are trying to learn the character of a
chemical bond from nuclear magnetic resonance data, the effectiveness of a medicine from clinical
data, the structure of the earth’s interior from seismic data, the elasticity of a demand from economic
data, or the structure of a distant galaxy from telescopic data, (4-3) indicates what probabilities
we need to find in order to see what conclusions are justified by the totality of our evidence. If
P(H|DX) is very close to one (zero), then we may conclude that H is very likely to be true (false)
and act accordingly. But if P(H|DX) is not far from I, then the robot is warning us that the
available evidence is not sufficient to justify any very confident conclusion, and we need to get more
and better evidence.

Testing Binary Hypotheses with Binary Data

The simplest nontrivial problem of hypothesis testing is the one where we have only two hypotheses
to test and only two possible data values. Surprisingly, this turns out to be a realistic and valuable
model of many important inference and decision problems. First, let us adapt (4-3) to this binary
case. It gives us the probability that H is true, but we could have written it equally well for the
probability that H is false:

P(D|HX)

P(H|DX)= P(H|X 4-4
(@D = PIX) 5 (4-4)

and if we take the ratio of the two equations:
PH|DX)  P(H|X) P(D|H X) (4-5)

P(H|DX)  P(H|X) P(D|HX)

the term P(D|X ) will drop out. This may not look like any particular advantage, but the quantity
that we have here, the ratio of the probability that H is true to the probability that it’s false, has a
technical name. We call it the “odds” on the proposition H. So if we write the “odds on H, given
D and X,” as the symbol

o xy= LUID X) (4-6)
P(H|DX)
then we can combine (4-3) and (4-4) into the following form:
P(DIHX
OH|D X)=0(H|X) (DIIX) (4-7)

P(DIHX) "
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The posterior odds on H is (are?) equal to the prior odds multiplied by a dimensionless factor which
is also called a likelihood ratio. The odds are (is?) a strict monotonic function of the probability,
so we could equally well calculate this quantity.

In many applications it is convenient to take the logarithm of the odds because of the fact
that we can then add up terms. Now we could take logarithms to any base we please, and this cost
the writer some trouble. Our analytical expressions always look neater in terms of natural (base )
logarithms. But back in the 1940’s and 1950’s when this theory was first developed, we used base
10 logarithms because they were easier to find numerically; the four—figure tables would fit on a
single page. Finding a natural logarithm was a tedious process, requiring leafing through enormous
old volumes of tables.

Today, thanks to hand calculators, all such tables are obsolete and anyone can find a ten digit
natural logarithm just as easily as a base 10 logarithm, in one second. Therefore we started happily
to rewrite this section in terms of the aesthetically prettier natural logarithms. But the result
taught us that there is another, even stronger, reason for using base 10 logarithms. Our minds are
thoroughly conditioned to the base 10 number system, and base 10 logarithms have an immediate,
clear intuitive meaning to all of us. But we just don’t know what to make of a conclusion that is
stated in terms of natural logarithms, until it is translated back into base 10 terms. Therefore, we
re-re—wrote this discussion, reluctantly, back into the old, ugly base 10 convention.

We define a new function which we will call the evidence for H given D and X:
e(H|D X)=10 log,, O(H|DX). (4-8)
This is still a monotonic function of the probability. By using the base 10 and putting the factor
10 in front, we are now measuring evidence in decibels (hereafter abbreviated to db). The evidence

for H, given D, is equal to the prior evidence plus the number of db provided by working out the
log likelihood in the last term below:

(4-9)

e(H|DX)=e(H|X)+ 10 logy, [P(D|HX)]

P(D|HX)
Now suppose that this new information D actually consisted of several different propositions:

D=DyDyDs -

Then we could expand the likelihood ratio by successive applications of the product rule:

P(Dy|H X)
P(Dy|HX)

(4-10)

e(H|DX) = e(H|X)+ 10 logyq [ P(Ds|Dy X)] .

+10 1 [ —
] %810 | 5D, Dy TX)

But in many cases, the probability of getting D5 is not influenced by knowledge of Dj:

P(Dy|DyHX) = P(Dy|HX)

T Our uncertain phrasing here indicates that “odds” is a grammatically slippery word. We are inclined
to agree with purists who say that it is, like “mathematics” and “physics”, a singular noun in spite of
appearances. Yet the urge to follow the vernacular and treat it as plural is sometimes irresistible, and so
we shall be knowingly inconsistent and use it both ways, judging what seems euphonious in each case.
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One then says conventionally that Dy and Dy are independent. Of course, we should really say
that the probabilities which the robot assigns to them are independent. It is a semantic confusion
to attribute the property of “independence” to propositions or events; for that implies, in common
language, physical causal independence. We are concerned here with the very different quality of
logical independence.

To emphasize this, note that neither kind of independence implies the other. Two events
may be in fact causally dependent (i.e., one influences the other); but for a scientist who has not
yet discovered this, the probabilities representing his state of knowledge — which determine the
only inferences he is able to make — might be independent. On the other hand, two events may
be causally independent in the sense that neither exerts any causal influence on the other (for
example, the apple crop and the peach crop); yet we perceive a logical connection between them,
so that new information about one changes our state of knowledge about the other. Then for us
their probabilities are not independent.

Quite generally, as the robot’s state of knowledge represented by H and X changes, probabil-
ities conditional on them may change from independent to dependent or wvice versa; yet the real
properties of the events remain the same. Then one who attributed the property of dependence or
independence to the events would be, in effect, claiming for the robot the power of psychokinesis.
We must be vigilant against this confusion between reality and a state of knowledge about reality,
which we have called the “Mind Projection Fallacy”.

The point we are making is not just pedantic nit-picking; we shall see presently [Eq. (4-
27)] that it has very real, substantive consequences. In Chapter 3 we have discussed some of
the conditions under which these probabilities might be independent, in connection with sampling
from a very large known population, and sampling with replacement. In the closing Comments we
noted that whether urn probabilities do or do not factor can depend on whether we do or do not
know that the contents of several urns are the same. In our present problem, as in Chapter 3, to
interpret causal independence as logical independence, or to interpret logical dependence as causal
dependence, has led some to nonsensical conclusions in fields ranging from psychology to quantum
theory.

In case these several pieces of data are logically independent given (H X ) and also given (H X ),
the above equation becomes:

(4-11)

HIDX) = eCH1X) +10 5 oy [ ]

P(D:|AX)

where the sum is over all the extra pieces of information that we get.

To get some feeling for numerical values here, let us construct a table. We have three different
scales on which we can measure degrees of plausibility; evidence, odds, or probability; they’re all
monotonic functions of each other. Zero db of evidence corresponds to odds of 1 or to a probability
of 1/2. Now every physicist or electrical engineer knows that 3 db means a factor of 2 (nearly) and
10 db is a factor of 10 (exactly); and so if we go in steps of 3 db, or 10, we can construct this table
very easily:
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e 0 D

0 11 1/2

3 2:1 2/3

6 4:1 4/5
10 10:1 10/11
20 100:1 100/101
30 1000:1 999
40 10%:1 9999
—e 1/0 1—p

Table 4.1 Evidence, Odds, and Probability

You see here why it is very cogent to give evidence in db. When probabilities get very close to
one or very close to zero, our intuition doesn’t work very well. Does the difference between the
probability of 0.999 and 0.9999 mean a great deal to you? It certainly doesn’t to the writer. But
after living with this for only a short while, the difference between evidence of plus 30 db and plus
40 db does have a clear meaning to us. It’s now in a scale which our minds comprehend naturally.
This is just another example of the Weber—Fechner law; intuitive human sensations tend to be
logarithmic functions of the stimulus.

Even the factor of 10 in (4-8) is appropriate. In the original acoustical applications, it was
introduced so that a 1 db change in sound intensity would be, psychologically, about the smallest
change perceptible to our ears. With a little familiarity and a little introspection, we think that the
reader will agree that a 1 db change in evidence is about the smallest increment of plausibility that
is perceptible to our intuition. Nobody claims that the Weber—Fechner law is a precise rule for all
human sensations, but its general usefulness and appropriateness is clear; almost always it is not
the absolute change, but more nearly the relative change, in some stimulus that we perceive. For
an interesting account of the life and work of Gustav Theodor Fechner (1801 — 1887), see Stigler
(1986).

Now let’s apply (4-11) to a specific calculation, which we shall describe as a problem of
industrial quality control (although it could be phrased equally well as a problem of cryptography,
chemical analysis, interpretation of a physics experiment, judging two economic theories, etc).
Following the example of 1. J. Good (1950) we assume numbers which are not very realistic, in
order to bring out some points of principle better. Let the prior information X consist of the
following statements:

X = “We have eleven automatic machines turning out widgets, which pour out of a machine
loosely into a box. This example corresponds to a very early stage in the development
of widgets, because ten of the machines produce one in six defective. The eleventh
machine is even worse; it makes one in three defective. The output of each machine
has been collected in an unlabelled box and stored in the warehouse.”

We choose one of the boxes and test a few of the widgets, classifying them as “good” or “bad”.
Our job is to decide whether we got a box from the bad machine or not; that is, whether we’re
going to accept this batch or reject it.

Let us turn this job over to our robot and see how it performs. First it must find the prior
evidence for the various propositions of interest. Let
A = “We got a bad batch (1/3 defective)”
= “We got a good batch (1/6 defective)”
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The qualitative part of our prior information X told us that there are only two possibilities; so in
the “logical environment” generated by X, these propositions are related by negation: given X, we
can say that

A=B, B=A. (4-12)

The only quantitative prior information is that there are eleven machines and we don’t know which
one made our batch, so by the principle of indifference P(A|X) = 1/11, and

PAIX) log WD g g (4-13)

e(A[X) = 10 logy, P(AIX) 19 (10/11)

whereupon we have necessarily e(B|X) = +10 db.

Evidently, in this problem the only properties of X that will be relevant for the calculation are
just these numbers, £10 db. Any other kind of prior information which led to the same numbers
would give us just the same mathematical problem from this point on. So, it is not necessary to
say that we’re talking only about a problem where there are eleven machines, and so on. There
might be only one machine, and the prior information consists of our previous experience with it.

Our reason for stating the problem in terms of eleven machines was that we have, thus far,
only one principle, indifference, by which we can convert raw information into numerical probability
assignments. We interject this remark because of a famous statement by Feller (1951) about a single
machine, which we consider in Chapter 17 after accumulating some more evidence pertaining to
the issue he raised. To our robot, it makes no difference how many machines there are; the only
thing that matters is the prior probability of a bad batch, however arrived at.T

Now from this box we take out a widget and test it to see whether it is defective. If we pull
out a bad one, what will that do to the evidence for a bad batch? That will add to it

P(badlA X)

101 il
%810 D had[AX)

(4-14)

where P(bad|AX ) represents the probability of getting a bad widget, given A, etc.; these are
sampling probabilities, and we have already seen how to calculate them. Our procedure is very
much “like” drawing from an urn and as in Chapter 3, on one draw our datum D now consists only
of a binary choice: (good/bad). The sampling distribution P(D|H X') reduces to

P(bad|AX)=>,  P(good|AX)= =, (4-15)

D= W
| O Wl N

P(bad|BX)= -,  P(good|BX)= (4-16)

Thus, if we find a bad widget on the first draw, this will increase the evidence for A by

1/3

(1/6)

T Notice that in this observation we have the answer to a point raised in Chapter 1: how does one make a
machine ‘cognizant’ of the meanings of the various propositions that it is being called upon to deal with?
The answer is that the robot does not need to be ‘cognizant’ of anything. If we give it, in addition to the
model and the data, a coded list of the propositions to be considered, with their prior probabilities, this
conveys all the ‘meaning’ needed to define the mathematical problem.
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What happens now if we draw a second bad one? We are sampling without replacement, so as we
noted in (3-10) , the factor (1/3) in (4-17) should be updated to

(N/3)-1 1 2 (4-18)

1
N—-1 ~— 3 3(N-1)

where N is the number of widgets in the batch. But to avoid this complication, we suppose that NV
is very much larger than any number that we contemplate testing; i.e., we are going to test such
a negligible fraction of the batch that the proportion of bad and good ones in it is not changed
appreciably by the drawing. Then the limiting form of the hypergeometric distribution (3-18) will
apply, namely the binomial distribution (3-74). Thus we shall consider that, given A or B, the
probability of drawing a bad one is the same at every draw regardless of what has been drawn
previously; so every bad one we draw will provide +3 db of evidence in favor of hypothesis A.

Now suppose we find a good widget. Using (4-12), we'll get evidence for A of

P(good|AX) 2/3
10 1 ———— =101 —— = —0.97db . 4-1
0 logy, Pleood|BY) 0 logy, 5/6 0.97 (4-19)

but let’s call it —1 db. Again, this will hold for any draw, if the number in the batch is sufficiently
large. If we have inspected n widgets, of which we found n; bad ones and n, good ones, the evidence
that we have the bad batch will be

e(A|DX) = e(A|X)+ 3np, — ny (4-20)

You see how easy this is to do once we’ve set up the logarithmic machinery. The robot’s mind is
“driven in one direction or the other” in a very simple, direct way.

Perhaps this result gives us a deeper insight into why the Weber—Fechner law applies to intuitive
plausible inference. Our “evidence” function is related to the data that we have observed in about
the most natural way imaginable; a given increment of evidence corresponds to a given increment
of data. For example, if the first twelve we test yield five bad ones, then

e(A|DX)=-10+3-5-7=—-2db (4-21)

or, the probability of a bad batch is raised by the data from (1/11) = .09 to P(A|DX) ~ 0.4.

In order to get at least 20 db of evidence for proposition A, how many bad ones would we have
to find in a certain sequence of n = ny + n, tests? This requires

3ny — ng=4ny, — n=n4f, — 1)>20 (4-22)

so if the fraction f, = ny/n of bad ones remains greater than 1/4, then we shall accumulate
eventually 20 db, or any other positive amount, of evidence for A. It appears that f, = 1/4 is the
threshold value at which the test can provide no evidence for either A or B over the other; but
note that the +3 and —1 in (4-20) are only approximate. The exact threshold fraction of bad ones
is, from (4-17) and (4-19),

log(%)

fi= log(2) + log(%)

= 0.2435292 , (4-23)
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in which the base of the logarithms does not matter. Sampling fractions greater (less) than this
give evidence for A over B (B over A); but if the observed fraction is close to the threshold, it will
require many tests to accumulate very much evidence.

Now all we have here is the probability or odds or evidence, whatever you wish to call it, of
the proposition that we got the bad batch. Eventually, we have to make a decision. We’re going
to accept it or we're going to reject it. How are we going to do that? Well, we might decide
beforehand: if the probability of proposition A reaches a certain level then we’ll decide that A is
true. If it gets down to a certain value, then we’ll decide that A is false.

There is nothing in probability theory per se which can tell us where to put these critical
levels at which we make our decision. This has to be based on value judgments: what are the
consequences of making wrong decisions, and what are the costs of making further tests? This
takes into the realm of Decision Theory, considered in Chapters 13 and 14. But for now it is clear
that making one kind of error (accepting a bad batch) might be more serious than making the
other kind of error (rejecting a good batch). That would have an obvious effect on where we place
our critical levels.

So we could give the robot some instructions such as “If the evidence for 4 gets greater than
+0 db, then reject this batch (it is more likely to be bad than good). If it goes as low as —13, then
accept it (there is at least a 95% probability that it is good). Otherwise, continue testing.” We
start doing the tests, and every time we find a bad widget the evidence for the bad batch goes up
3 db; every time we find a good one, it goes down 1 db. The tests terminate as soon as we get into
either the accept or reject region for the first time.

This is the way our robot would do it if we told it to reject or accept on the basis that
the posterior probability of proposition A reaches a certain level. This very useful and powerful
procedure is called “Sequential Inference” in the statistical literature, the term signifying that the
number of tests is not determined in advance, but depends on the sequence of data values that we
find; at each step in the sequence we make one of three choices: (a) stop with acceptance; (b) stop
with rejection; (c¢) make another test. The term should not be confused with what has come to
be called “Sequential Analysis with Non-optional Stopping”, which is a serious misapplication of
probability theory; see the discussions of optional stopping in Chapters 6 and 17.

Non—Extensibility Beyond the Binary Case

This binary hypothesis testing problem turned out to have such a beautifully simple solution that
we might like to extend it to the case of more than two hypotheses. Unfortunately, the convenient
independent additivity over data sets in (4-11) and the linearity in (4-20) do not generalize. By
“independent additivity” we mean that the increment of evidence from a given datum D; depends
only on D; and H; not on what other data have been observed. As (4-10) shows, we always have
additivity, but not independent additivity unless the probabilities are independent.

We state the reason for this non—extensibility in the form of an exercise for the reader; to
prepare for it, suppose that we have n hypotheses {Hy ... H,} which on prior information X are
mutually exclusive and exhaustive:

P(H:H,|X) = P(H|X) 6, i P(H|X)=1. (4-24)

Also, we have acquired m data sets {D; ...D,,}, and as a result the probabilities of the H; become
updated in odds form by (4-7) , which now becomes

P(Dy...D,,|H;X)
P(Dy...D,|HX)

O(H:|Dy...DyX) = O(H;|X) (4-25)
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It is common that the numerator will factor because of the logical independence of the D;, given
Hi:

P(Dy...Dy|HX) =[] P(D;|H:X), 1<i< n. (4-26)
J
If the denominator should also factor:
P(Dy...Dy|H:X) =[] P(D;IHX), 1<i<n (4-27)
J

then (4-25) would split into a product of the updatings produced by each D; separately, and the
log-odds formula (4-9) would again take a form independently additive over the D; as in (4-11).

Exercise 4.1. Show that there is no such nontrivial extension of the binary case. More
specifically, prove that if (4-26) and (4-27) hold with n > 2, then at most one of the factors

P(Dy|H; X) P(D,|H; X)
P(Dy|H; X) P(D,|H; X)

is different from unity, therefore at most one of the data sets D; can produce any updating of
the probability of H;.

This has been a controversial issue in the literature of Artificial Intelligence (Glymour, 1985;
Johnson, 1985). Those who fail to distinguish between logical independence and causal indepen-
dence would suppose that (4-27) is always valid, provided only that no D; exerts a physical influence
on any other D;. But we have already noted the folly of such reasoning; this is a place where the
semantic confusion can lead to serious numerical errors. When n = 2, (4-27) follows from (4-26).
But when n > 2, (4-27) is such a strong condition that it would reduce the whole problem to a
triviality not worth considering; we have left it as the above exercise for the reader to examine the
equations to see why this is so. Because of Cox’s theorems expounded in Chapter 2, the verdict of
probability theory is that our conclusion about nonextensibility can be evaded only at the price of
committing demonstrable inconsistencies in our reasoning.

To head off a possible misunderstanding of what is being said here, let us add the following.
However many hypotheses we have in mind, it is of course always possible to pick out two of them
and compare them only against each other. This reverts to the binary choice case already analyzed,
and the independent additive property holds within that smaller problem (find the status of an
hypothesis relative to a single alternative).

We can organize this by choosing A; as the standard “null hypothesis” and comparing each
of the others to it by solving n — 1 binary problems; whereupon the relative status of any two
propositions is determined. For example, if A5 and A7 are favored over Ay by 22.3 db and 31.9 db
respectively, then Az is favored over As by 31.9—22.3 = 9.6 db. If such binary comparisons provide
all the information one wants, there is no need to consider multiple hypothesis testing at all.

But that would not solve our present problem; given the solutions of all these binary problems,
it would still require a calculation as big as the one we are about to do, to convert that information
into the absolute status of any given hypothesis relative to the entire class of n hypotheses. Here
we are going after the solution of the larger problem directly.

In any event, we need not base our stance merely on claims of authoritarian finality for an
abstract theorem; more constructively, we now show that probability theory does lead us to a
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definite, useful procedure for multiple hypothesis testing, which gives us a much deeper insight and
makes it clear why the independent additivity cannot, and should not, hold when n > 2. It would
then ignore some very cogent information; that is the demonstrable inconsistency.

Multiple Hypothesis Testing

Suppose that something very remarkable happens in the sequential test just discussed; we tested
fifty widgets and every one turned out to be bad. According to (4-20), that would give us 150
db of evidence for the proposition that we had the bad batch. e(A|E) would end up at +140 db,
which is a probability which differs from 1 by one part in 10'*. Now our common sense rejects this
conclusion; some kind of innate skepticism rises in us. If you test 50 of them and you find that all
50 are bad, you are not willing to believe that you have a batch in which only 1 in 3 are really bad.
So what went wrong here? Why doesn’t our robot work in this case?

We have to recognize that our robot is immature; it reasons like a 4-year-old child does. The
remarkable thing about small children is that you can tell them the most ridiculous things and they
will accept it all with wide open eyes, open mouth, and it never occurs to them to question you.
They will believe anything you tell them.

Adults learn to make mental allowance for the reliability of the source when told something
hard to believe. One might think that, ideally, the information which our robot should have put
into its memory was not that we had either 1/3 bad or 1/6 bad; the information it should have put
in was that some unreliable human said that we had either 1/3 bad or 1/6 bad.

More generally, it might be useful in many problems if the robot could take into account the
fact that the information it has been given may not be perfectly reliable to begin with. There is
always a small chance that the prior information or data that we fed to the robot was wrong. In a
real problem there are always hundreds of possibilities, and if you start out the robot with dogmatic
initial statements which say that there are only two possibilities, then of course you mustn’t expect
its conclusions to make sense in every case.

To accomplish this skeptically mature behavior automatically in a robot is something that we
can do, when we come to consider significance tests; but fortunately, after further reflection we
realize that for most problems the present immature robot is what we want after all, because we
have better control over it.

We do want the robot to believe whatever we tell it; it would be dangerous to have a robot
who suddenly became skeptical in a way not under our control when we tried to tell it some true
but startling — and therefore highly important — new fact. But then the onus is on us to be aware
of this situation, and when there is a good chance that skepticism will be needed, it is up to us to
give the robot a hint about how to be skeptical for that particular problem.

In the present problem we can give the hint which makes the robot skeptical about A when it
sees “too many” bad widgets, by providing it with one more possible hypothesis, which notes that
possibility and therefore, in effect, puts the robot on the lookout for it. As before, let proposition
A mean that we have a box with 1/3 defective, and proposition B is the statement that we have
a box with 1/6 bad. We add a third proposition C', that something went entirely wrong with the
machine that made our widgets, and it’s turning out 99 per cent defective.

Now we have to adjust our prior probabilities to take this new possibility into account. But
we do not want this to be a major change in the nature of the problem; so let hypothesis C'
have a very low prior probability P(C|X) of 107% (=60 db). We could write out X as a verbal
statement which would imply this, but we can state what proposition X is, with no ambiguity at
all for purposes of this problem, simply by giving the probabilities conditional on X, of all the
propositions that we’re going to use in this problem. In that way we don’t state everything about



413 Chap. 4: ELEMENTARY HYPOTHESIS TESTING 413

X that is important conceptually; but we state everything about X that is relevant to our current
mathematical problem.

So suppose we start out with these initial probabilities:

P(A|X) = %(1 _107%)
P(BIX) = %(1 _107%) (4-28)
P(C|X)=10"°

where
A means “We have a box with 1/3 defective”
B means “We have a box with 1/6 defective”
C means “We have a box with 99/100 defective.”

The factors (1 — 107%) are practically negligible, and for all practical purposes, we will start out
with the initial values of evidence:

—10 db for A
+10 db for B
—60 db for C .
The data proposition D stands for the statement that “m widgets were tested and every one was

defective.” Now, from (4-9) the posterior evidence for proposition C' is equal to the prior evidence
plus 10 times the logarithm of this probability ratio:

P(D|ICX)
e(C|DX)=¢e(C|X)+ 10 lo —_— 4-29
(CIDX) = (C1X) +10 logyy s (4-29)
Our discussion of sampling with and without replacement in Chapter 3 shows that
99 \ "
P D X = —_— 4—
lex) = () (1-30)

is the probability that the first m are all bad, given that 99 per cent of the machine’s output is
bad, under our assumption that the total number in the box is large compared to the number m
tested.

We also need the probability P(D|CX), which we can evaluate by two applications of the
product rule (4-3):

— P(C|DX
P(D|ICX)=P(D|X) y (4-31)
P(C1X)
But in this problem the prior information states dogmatically that there are only three possibilities,
and so the statement €' = “C is false” implies that either A or B must be true:
P(C|DX)= P(A+ B|DX) = P(A|DX)+ P(B|DX) (4-32)

where we used the general sum rule (2-48), the negative term dropping out because A and B are
mutually exclusive. Similarly,
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P(C|X)= P(A|X)+ P(B|X). (4-33)
Now if we substitute (4-32) into (4-31), the product rule will be applicable again in the form

P(AD|X) = P(D|X) P(A|DX) = P(A|X) P(D|AX)

(4-34)
P(BD|X) = P(D|X) P(B|DX) = P(B|X) P(D|BX)
and so (4-31) becomes
P(DITX) = P(D|AX) P(A|X)+ P(D|BX) P(B|X) (4-35)

P(A|X) + P(B|X)
in which all probabilities are known from the statement of the problem.

Digression on Another Derivation: Although we have the desired result (4-35), let us note
that there is another way of deriving it, which is often easier than direct application of (4-3). The
principle was introduced in our derivation of (3-28): resolve the proposition whose probability
is desired (in this case D) into mutually exclusive propositions, and calculate the sum of their
probabilities. We can carry out this resolution in many different ways by “introducing into the
conversation” any set of mutually exclusive and exhaustive propositions {P, @, R,---} and using
the rule of Boolean algebra:

D=DP+Q+R+---)=DP+DQ+DR+---

But the success of the method depends on our cleverness at choosing a particular set for which
we can complete the calculation. This means that the propositions introduced must have a known
kind of relevance to the question being asked; the example of penguins at the end of Chapter 2 will
not be helpful if that question has nothing to do with penguins.

In the present case, for evaluation of P(D|C' X), it appears that propositions A and B have
this kind of relevance. Again, we note that proposition C' implies (A 4+ B); and so

P(D|CX) = P(D(A+ B)|CX)=P(DA+ DB|CX)

_ _ (4-36)
= P(DA|CX )+ P(DB|CX) .
These probabilities can be factored by the product rule:
P(D|CX)= P(DIACX) P(A|CX)+ P(D|BCX) P(B|CX). (4-37)

But we can abbreviate: P(D|ACX) = P(D|AX) and P(D|BCX) = P(D|BX), because in the
way we set up this problem, the statement that either A or B is true implies that ¢’ must be false.
For this same reason, P(C|AX) =1, and so by the product rule,

PAJCX) = = (4-38)

and similarly for P(B|C' X ). Substituting these results into (4-37) and using (4-33), we again arrive
at (4-35). This agreement provides another illustration — and test — of the consistency of our rules
for extended logic.
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Back to the Problem: Returning to (4-35), we have the numerical value
- " (1 1™ 10
PDICX)=1{=] | — o 4
o= 5) () () ()

and everything in (4-29) is now at hand. If we put all these things together, we find that the
evidence for proposition C is:

99 \m
e(C|DX) = —604 10 log,, [ — (7500)10 5 m] : (4-40)
w(3)" + 11(s)
If m is larger than 5, a good approximation is
e(Cl1DX )~ —49.6 +4.73 m , m > 5 (4-41)
and if m is less than 3, a crude approximation is
e(Cl1DX)~ —60+7.73m, m <3 (4-42)

Proposition €' starts out at minus 60 db, and the first few bad ones we find will each give about
7.73 db of evidence in favor of C, so the graph of e(C|DX) vs. m will start upward at a slope
of 7.73. But then the slope drops, when m > 5, to 4.73. The evidence for C reaches 0 db when
m =~ 49.6/4.73 = 10.5. So, ten consecutive bad widgets would be enough to raise this initially very
improbable hypothesis up 58 db, to the place where the robot is ready to consider it very seriously;
and eleven consecutive bad ones would take it over the threshold, to where the robot considers it
more likely to be true than false.

In the meantime, what is happening to our propositions A and B? As before, A starts off at
—10, B starts off at 410, and the plausibility of A starts going up 3 db per defective widget. But
after we’ve found too many bad ones, that skepticism would set in, and you and I would begin to
doubt whether the evidence really supports proposition A after all; proposition €' is becoming a
much easier way to explain what is observed. Has the robot also learned to be skeptical?

After m widgets have been tested, and all proved to be bad, the evidence for propositions A
and B, and the approximate forms, are as follows:

(3)" ]
ADX)= —10+ 10 1
AAIDX) 10 T [(é)m F I 10-5(Z)m

100
(4743)
—10+3m form < 7
| +496-473m  form > 8
e(B|IDX)=410+ 10 + logy, [ T (é)m — 35 ]
(4-44)

~

10 — 3m for m < 10
59.6 — 7.33m form > 11
The exact results, printed out by the program SEQUENT.BAS, are tabulated in Appendix I, and

summarized in Fig. 4.1. We can learn quite a lot about multiple hypothesis testing from studying
this diagram. The initial straight line part of the A and B curves represents the solution as we
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found it before we introduced proposition C'; the change in plausibility of propositions A and B
starts off just the same as in the previous problem. The effect of proposition €' does not appear
until we have reached the place where C' crosses B. At this point, suddenly the character of the A
curve changes; instead of going on up, at m = 7 it has reached its highest value of 10 db. Then it
turns around and comes back down; the robot has indeed learned how to become skeptical. But
the B curve does not change at this point; it continues on linearly until it reaches the place where
A and C have the same plausibility, and at this point it has a change in slope. From then on, it
falls off more rapidly.

Figure 4.1. A Surprising Multiple Sequential Test
Wherein a Dead Hypothesis (C) is Resurrected.

Most people find all this surprising and mysterious at first glance; but then a little meditation
is enough to make us perceive what is happening and why. The change in plausibility of A due to
one more test arises from the fact that we are now testing hypothesis A against two alternatives:
B and C'. But initially B is so much more plausible than (', that for all practical purposes we
are simply testing A against B, and reproducing our previous solution (4-20). But after enough
evidence has accumulated to bring the plausibility of C' up to the same level as B, then from that
point on A is essentially being tested against €' instead of B, which is a very different situation.

All of these changes in slope can be interpreted in this way. Once we see this principle, it is
clear that the same thing is going to be true more generally. As long as we have a discrete set of
hypotheses, a change in plausibility of any one of them will be approximately the result of a test of
this hypothesis against a single alternative — the single alternative being that one of the remaining
hypotheses which is most plausible at that time. As the relative plausibilities of the alternatives
change, the slope of the A curve must also change; this is the cogent information that would be lost
if we tried to retain the independent additive form (4-11) when n > 2.

But whenever the hypotheses are separated by about 10 db or more, then multiple hypothesis
testing reduces approximately to testing each hypothesis against a single alternative. So, seeing
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this, you can construct curves of the sort shown in Fig. 4.1 very rapidly without even writing down
the equations, because what would happen in the two—hypothesis case is easily seen once and for
all. The diagram has a number of other interesting geometrical properties, suggested by drawing
the six asymptotes and noting their vertical alignment (dotted lines), which we leave for the reader
to explore.

All the information needed to construct fairly accurate charts resulting from any sequence of
good and bad tests is contained in the “plausibility flow diagrams” of Fig. 4.2, which summarize
the solutions of all those binary problems; every possible way to test one proposition against a
single alternative. It indicates, for example, that finding a good one raises the evidence for B by 1
db if B is being tested against A, and by 19.22 db if it is being tested against €. Similarly, finding
a bad one raises the evidence for A by 3 db if A is being tested against B, but lowers it by 4.73 db
if it is being tested against C':

GOOD: A =10—=B [—19.22— C |— 1824 —| A

BAD: A [«~30—~ B | =773 = C [«—4.73 A

Figure 4.2 Plausibility Flow Diagrams

Likewise, we see that finding a single good one lowers the evidence for ' by an amount that cannot
be recovered by two bad ones; so there is a “threshold of skepticism”. C' will never attain an
appreciable probability; i.e., the robot will never become skeptical about propositions A and B, as
long as the observed fraction f of bad ones remains less than 2/3.

More precisely, define a threshold fraction f; thus: as the number of tests m — oo with
f=mp/m — const., e(C|DX) tends to +oo if f > fi, and to —oo if f < f;. The exact threshold
turns out to be greater than 2/3: f; = 0.793951 (Exercise 4.2). If the observed fraction bad remains
above this value, the robot will be led eventually to prefer proposition € over A and B.

Exercise 4.2. Calculate the exact threshold of skepticism f;(z,y), supposing that proposition
C has instead of 107° an arbitrary prior probability P(C|X) = =z and specifies instead of
(99/100) an arbitrary fraction y of bad widgets. Then discuss how the dependence on z and y
corresponds — or fails to correspond — to human common sense. [In problems like this, always try
first to get an analytic solution in closed form. If you are unable to do this, then you must write
a short computer program like SEQUENT.BAS in Appendix I, which will display the correct
numerical values in tables or graphs.]

Exercise 4.3. Show how to make the robot skeptical about both unexpectedly high and
unexpectedly low numbers of bad widgets in the observed sample. Give the full equations.
Note particularly the following: if A is true, then we would expect, according to the binomial
distribution (3-74), that the observed fraction of bad ones would tend to about 1/3 with many
tests, while if B is true it should tend to 1/6. Suppose that it is found to tend to the threshold
value (4-22), close to 1/4. On sufficiently large m, you and I would then become skeptical about
A and Bj; but intuition tells us that this would require a much larger m than 10, which was
enough to make us and the robot skeptical when we find them all bad. Do the equations agree
with our intuition here, if a new hypothesis /' is introduced which specifies P(bad|F'X) ~ 1/47
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In summary, the role of our new hypothesis ' was only to be held in abeyance until needed,
like a fire extinguisher. In a normal testing situation it is “dead”, playing no part in the inference
because its probability is and remains far below that of the other hypotheses. But a dead hypothesis
can be resurrected to life by very unexpected data. Exercises (4.2) and (4.3) ask the reader to
explore the phenomenon of resurrection of dead hypotheses in more detail than we do in this
Chapter, but we return to the subject in Chapter 5.

Figure 4.1 shows an interesting thing. Suppose we had decided to stop the test and accept
hypothesis A if the evidence for it reached plus 6 db. You see, it would overshoot that value at the
sixth trial. If we stopped the testing at that point, then we would never see the rest of this curve
and see that it really goes down again. If we had continued the testing beyond this point, then we
would have changed our minds again.

At first glance this seems disconcerting, but notice that it is inherent in all problems of hy-
pothesis testing. If you stop the test at any finite number of trials, then you can never be absolutely
sure that you have made the right decision. It is always possible that still more tests would have led
you to change your decision. But note also that probability theory as logic has automatic built—in
safety devices that can protect the user against unpleasant surprises. Although it is always possible
that your decision is wrong, this is extremely improbable if your critical level for decision requires
e(A|DX) to be large and positive. For example, if e(A|DX) > 20 db, then P(A|DX) > 0.99,
and the total probability of all the alternatives is less than 0.01; then few would hesitate to decide
confidently in favor of A.

In a real problem we may not have enough data to give such good evidence, and one might
suppose that one could decide safely if the most likely hypothesis A is well separated from the
alternatives, even though e(A|DX) is itself not large. Indeed, if there are 1000 alternatives but
the separation of A from the most likely alternative is more than 20 db, then the odds favor A by
more than 100:1 over any one of the alternatives, and if we were obliged to make a definite choice
of one hypothesis here and now, there could still be no hesitation in choosing A; it is clearly the
best we can do with the information we have. Yet we cannot do it so confidently, for it is now
very plausible that the decision is wrong, because the class of alternatives as a whole is about as
probable as A. But probability theory warns us, by the numerical value of e(A|DX ), that this is
the case; we need not be surprised by it.

In scientific inference our job is always to do the best we can with whatever information we
have; there is no advance guarantee that our information will be sufficient to lead us to the truth.
But many of the supposed difficulties arise from an inexperienced user’s failure to recognize and
use the safety devices that probability theory as logic always provides. Unfortunately, the current
literature offers no help here because its viewpoint, concentrated exclusively on sampling theory
aspects, directs attention to other things such as assumed sampling frequencies, as the following
exercises illustrate.

Exercise 4.4. Suppose that B is in fact true; estimate how many tests it will probably
require in order to accumulate an additional 20 db of evidence (above the prior 10 db) in favor
of B. Show that the sampling probability that we could ever obtain 20 db of evidence for A
is negligibly small, even if we sample millions of times. In other words it is, for all practical
purposes, impossible for a doctrinaire zealot to sample to a foregone false conclusion merely by
continuing until he finally gets the evidence he wants. Note: The calculations called for here
are called “random walk” problems; they are sampling theory exercises. Of course, the results
are not wrong, only incomplete. Some essential aspects of inference in the real world are not
recognized by sampling theory.
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Exercise 4.5. The estimate asked for in Exercise 4.4 is called the “Average Sample Number”
(ASN), and the original rationale for the sequential procedure (Wald, 1947) was not our deriva-
tion from probability theory as logic, but Wald’s conjecture (unproven at the time) that the
sequential probability-ratio tests such as (4-17) and (4-19) minimize the ASN for a given reli-
ability of conclusion. Discuss the validity of this conjecture; can one define the term “reliability
of conclusion” in such a way that the conjecture can be proved true?

Evidently, we could extend this example in many different directions. Introducing more “dis-
crete” hypotheses would be perfectly straightforward, as we have seen. More interesting would be
the introduction of a continuous range of hypotheses, such as:

H¢ = “The machine is putting out a fraction f bad.”

Then instead of a discrete prior probability distribution, our robot would have a continuous distri-
bution in 0 < f < 1, and it would calculate the posterior probabilities for various values of f on
the basis of the observed samples, from which various decisions could be made. In fact, although
we have not yet given a formal discussion of continuous probability distributions, the extension is
so easy that we can give it as an introduction to this example.

Continuous Probability Distribution Functions (pdf’s)

Our rules for inference were derived in Chapter 2 only for the case of finite sets of discrete propo-
sitions (A, B,...). But this is all we ever need in practice; for suppose that f is any continuously
variable real parameter of interest. Then the propositions

Fr=(f<q)
F'=(f>q)

are discrete, mutually exclusive, and exhaustive; so our rules will surely apply to them. Given some
information Y, the probability of F’ will in general depend on ¢, defining a function

Glq) = PFIY) (4-15)
which is evidently monotonic increasing. Then what is the probability that f lies in any specified

interval (@ < f < b)? The answer is probably obvious intuitively, but it is worth noting that it is
determined uniquely by the sum rule of probability theory, as follows. Define the propositions

A=(f<a), B=(f<b), W=(a<f<h)

Then a relation of Boolean algebra is B = A+ W, and since A and W are mutually exclusive, the
sum rule reduces to

P(B|Y) = P(AlY)+ P(W|Y) (4-46)
But P(B|Y) = G(b), and P(A|Y) = G(a), so we have the result:
Pla< f<b|Y)=PWI|Y)=0G(0) - G(a). (4-47)

In the present case G/(q) is continuous and differentiable, so we may write also

b

Pla<s<sy)= [ o (4-48)

a
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where g(f) = G'(f) > 0 is the derivative of G, generally called the probability distribution function,
or the probability density function for f, given Y'; either reading is consistent with the abbreviation
“pdf” which we use henceforth, following the example of Zellner (1971). Its integral G/(f) may be
called the cumulative distribution function (CDF) for f.

Thus limiting our basic theory to finite sets of propositions has not in any way hindered our
ability to deal with continuous probability distributions; we have applied the basic product and sum
rules only to discrete propositions in finite sets. As long as continuous distributions are defined
as above [Equations (4-47), (4-48)] from a basis of finite sets of propositions, we are protected
safely from inconsistencies by Cox’s theorems. But if one becomes overconfident and tries to
operate directly on infinite sets without considering how they are to be generated from finite sets,
this protection is lost and one stands at the mercy of all the paradoxes of infinite set theory, as
discussed in Chapter 15; one can then derive sense and nonsense with equal ease.

We must warn the reader about another semantic confusion which has caused error and contro-
versy in probability theory for many decades. It would be quite wrong and misleading to call ¢(f)
the “posterior distribution of f”, because that verbiage would imply to the unwary that f itself
is varying and is “distributed” in some way. This would be another form of the Mind Projection
Fallacy, confusing reality with a state of knowledge about reality. In the problem we are discussing,
f is simply an unknown constant parameter; what is “distributed” is not the parameter, but the
probability. Use of the terminology “probability distribution for f” will be followed, in order to
emphasize this constantly.

Of course, nothing in probability theory forbids us to consider the possibility that f might vary
with time or with circumstance; indeed, probability theory enables us to analyze that case fully,
as we shall see later. But then we should recognize that we are considering a different problem
than the one just discussed; it involves different quantities with different states of knowledge about
them, and requires a different calculation. Confusion of these two problems is perhaps the major
occupational disease of those who fool themselves by using the above misleading terminology. The
pragmatic consequence is that one is led to quite wrong conclusions about the accuracy and range
of validity of the results.

Questions about what happens when G/(q) is discontinuous at a point gy are discussed further
in Appendix B; for the present it suffices to note that, of course, approaching a discontinuous G(q)
as the limit of a sequence of continuous functions leads us to the correct results. As Gauss stressed
long ago, any kind of singular mathematics acquires a meaning only as a limiting form of some kind
of well-behaved mathematics, and it is ambiguous until we specify exactly what limiting process we
propose to use. In this sense, singular mathematics has necessarily a kind of “anthropomorphic”
character; the question is not “What is it?”, but rather “How shall we define it so that it is in some
way useful to us?”

In the present case, we approach the limit in such a way that the density function develops a
sharper and sharper peak, going in the limit into a delta function pg 6(¢ — qo) signifying a discrete
hypothesis Hg, and enclosing a limiting area equal to the probability py of that hypothesis. Eq.
(4-55) below is an example. There is no difficulty except for those who are determined to make
difficulties.

But in fact, if we become pragmatic we note that f is not really a continuously variable
parameter. In its working lifetime, a machine will produce only a finite number of widgets; if it is so
well built that it makes 10% of them, then the possible values of f are a finite set of integer multiples
of 1078, Then our finite set theory will apply, and consideration of a continuously variable f is only
an approximation to the exact discrete theory. There is never any need to consider infinite sets or
measure theory in the real, exact problem. Likewise, any data set that can actually be recorded and
analyzed is digitized into multiples of some smallest element. Most cases of allegedly continuously
variable quantities are like this when one takes note of the actual, real-world situation.



421 Chap. 4: ELEMENTARY HYPOTHESIS TESTING 421

Testing an Infinite Number of Hypotheses

In spite of the pragmatic argument just given, thinking of continuously variable parameters is
often a natural and convenient approximation to a real problem (only we should not take it so
seriously that we get bogged down in the irrelevancies for the real world that infinite sets and
measure theory generate). So suppose that we are now testing simultaneously an uncountably
infinite number of hypotheses about the machine. As often happens in mathematics, this actually
makes things simpler because analytical methods become available. However, the logarithmic form
of the previous equations is now awkward, and so we will go back to the original probability form

(4-3):

P(D|AX)

PAIDX) = P(AIX) e

Letting A now stand for the proposition “The fraction of bad ones is in the range (f, f+df)”, there
is a prior pdf

PAIX) = g(fI1X) df (4-49)

which gives the probability that the fraction of bad ones is in the range df; and let D stand for the
result thus far of our experiment:

D = “N widgets were tested and we found the results GGBGBBG - - - |
containing in all n bad ones and (N — n) good ones.”

Then the posterior pdf for f is given by

P(D|A, X)

PAIDX) = PAIX) =55

= g(fIDX)df,
so the prior and posterior pdf’s are related by

P(D|AX)

9U1DX) = o(1X) prpres (4-50)

The denominator is just a normalizing constant, which we could calculate directly; but usually
it is easier to determine (if it is needed at all) from requiring that the posterior pdf satisfy the
normalization condition

PO <7 <1Dx)= [ gtDx) =1, (1-51)
0

which we should think of as an extremely good approximation to the exact formula, which has a
sum over an enormous number of discrete values of f, instead of an integral.

The evidence of the data thus lies entirely in the f dependence of P(D|AX). At this point,
let us be very careful, in view of some errors that have trapped the unwary. In this probability,
the conditioning statement A specifies an interval df, not a point value of f. Are we justified in
taking an implied limit df — 0 and replacing P(D|AX) with P(D|H¢X)? Most writers have not
hesitated to do this.

Mathematically, the correct procedure would be to evaluate P(D]|AX ) exactly for positive df,
and pass to the limit df — 0 only afterward. But a tricky point is that if the problem contains
another parameter # in addition to f, then this procedure is ambiguous until we take the warning
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of Gauss very seriously, and specify exactly how the limit is to be approached (does df tend to zero
at the same rate for all values of §7). For example, if we set df = €h(f) and pass to the limit € — 0,
our final conclusions may depend on which function h(#) was used. Those who fail to notice this
fall into the famous Borel-Kolmogorov Paradox, in which a seemingly well-posed problem appears
to have many different correct solutions. We shall discuss this in more detail later (Chapter 15)
and show that the paradox is averted by strict adherence to our Chapter 2 rules.

In the present relatively simple problem, f is the only parameter present and P(D|H;X) is
a continuous function of f; this is surely enough to guarantee that the limit is well-behaved and
uneventful. But just to be sure, let us take the trouble to demonstrate this by direct application
of our Chapter 2 rules, keeping in mind that this continuum treatment is really an approximation
to an exact discrete one. Then with df > 0, we can resolve A into a disjunction of a finite number
of discrete propositions:

A=A+ A +...+4,

where A; = Hy (f being one of the possible discrete values) and the A; specify the discrete values
of f in the interval (f, f + df). They are mutually exclusive, so as we noted in Chapter 2, Eq.
(2-49), application of the product rule and the sum rule gives the general result

_ 2 P(AYX) P(D]AX)
a Ez P(Ai|X)

P(D|AX) = P(D|(Ay + Ay + ...+ A)X) (4-52)

which is a weighted average of the separate probabilities P(D|A;X ). This may be regarded also as
a generalization of (4-35).

Then if all the P(D|A; X ) were equal, (4-52) would become independent of their prior proba-
bilities P(A;|X ) and equal to P(D|A1X) = P(D|H ;X ); the fact that the conditioning statement
in the left-hand side of (4-52) is a logical sum makes no difference, and P(D|AX) would be rigor-
ously equal to P(D|H¢X). Even if the P(D|A;X) are not equal, as df — 0, we have n — 1 and
eventually A = Ay, with the same result.

It may appear that we have gone to extraordinary lengths to argue for an almost trivially
simple conclusion. But the story of the schoolboy who made a mistake in his sums and concluded
that the rules of arithmetic are all wrong, is not fanciful. There is a long history of workers who
did seemingly obvious things in probability theory without bothering to derive them by strict
application of the basic rules, obtained nonsensical results — and concluded that probability theory
as logic was at fault. The greatest, most respected mathematicians and logicians have fallen into
this trap momentarily, and some philosophers spend their entire lives mired in it; we shall see some
examples in the next Chapter.

Such a simple operation as passing to the limit df — 0 may produce results that seem to us
obvious and trivial; or it may generate a Borel-Kolmogorov paradox. We have learned from much
experience that this care is needed whenever we venture into a new area of applications; we must
go back to the beginning and derive everything directly from first principles applied to finite sets.
If we obey the Chapter 2 rules prescribed by Cox’s theorems, we are rewarded by finding beautiful
and useful results, free of contradictions.

Now if we were given that f is the correct fraction of bad ones, then the probability of getting
a bad one at each trial would be f, and the probability of getting a good one would be (1 — f). The
probabilities at different trials are, by hypothesis (i.e., one of the many statements hidden there in
X), logically independent given f, and so, as in our derivation of the binomial distribution (3-74),

P(DH;X) = f"(1= f)¥" (4-53)
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(note that the experimental data D told us not only how many good and bad ones were found, but
also the order in which they appeared). Therefore, we have the posterior pdf

=DV U)o
Jo (1= [)N=m g(fIX) df

g(fIDX) = (4-54)

You may be startled to realize that all of our previous discussion in this Chapter is contained in
this simple looking equation, as special cases. For example, the multiple hypothesis test starting
with (4-38) and including the final results (4-40) — (4-44) is all contained in (4-54) corresponding
to the particular choice of prior pdf :

GUIX) = 301 107)8(F = )+ (1= 1078/ = )+ 1076/ — 00) (4-55)

This is a case where the cumulative pdf, G(f) is discontinuous. The three delta—functions corre-
spond to the three discrete hypotheses B, A, C' respectively, of that example. They appear in the
prior pdf (4-55) with coefficients which are the prior probabilities (4-28); and in the posterior pdf
(4-54) with altered coefficients which are just the posterior probabilities (4-40), (4-43), (4-44).

Readers who have been taught to mistrust delta—functions as “nonrigorous” are urged to read
Appendix B at this point. The issue has nothing to do with mathematical rigor; it is simply one of
notation appropriate to the problem. It would be difficult and awkward to express the information
conveyed in (4-55) by a single equation in Lebesgue-Stieltjes type notation. Indeed, failure to use
delta—functions where they are clearly called for has led mathematicians into elementary errors, as
noted in Appendix B.

Suppose that at the start of this test our robot was fresh from the factory; it had no prior
knowledge about the machines at all, except for our assurance that it is possible for a machine to
make a good one, and also possible for it to make a bad one. In this state of ignorance, what prior
pdf g(f|X) should it assign? If we have definite prior knowledge about f, this is the place to put
it in; but we have not yet seen the principles needed to assign such priors. Even the problem of
assigning priors to represent “ignorance” will need much discussion later; but for a simple result
now it may seem to the reader, as it did to Laplace 200 years ago, that in the present case the
robot has no basis for assigning to any particular interval df a higher probability than to any other
interval of the same size; so the only honest way it can describe what it knows is to assign a uniform
prior probability density, g(f|X) = const. This will receive a better theoretical justification later;
to normalize it correctly as in (4-51) we must take

ofIX)=1, 0<f<L (4-56)

The integral in (4-54) is then the well-known Eulerian integral of the first kind, today more
commonly called the complete Beta—function; and (4-54) reduces to

ngj(VN—l_—l?)z!)! fra-pe (s

g(fIDX) =
[Historical Digression: It appears that this result was first found by an amateur mathematician,
the Rev. Thomas Bayes (1763). For this reason, the kind of calculations we are doing are often
called “Bayesian”. The general result (4-3) is usually called “Bayes’ theorem”, although Bayes
never wrote it. This terminology is misleading in several respects; firstly, (4-3) is nothing but the
product rule of probability theory which was recognized by other writers, such as Bernoulli and
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de Moivre, long before the work of Bayes. It was not Bayes, but Laplace (1774) who first saw the
result in generality and showed how to use it in real problems of hypothesis testing. Finally, the
calculations we are doing — the direct application of probability theory as logic — are more general
than mere application of Bayes’ theorem; that is only one of several items in our toolbox.]

The right-hand side of (4-57) has a single peak in (0 < f < 1), located by differentiation at

f=7

==

: (4-58)

just the observed proportion, or relative frequency, of bad ones. To find the sharpness of the peak,
write

L(f)y=logg(fIDX)=nlogf+ (N —n)log(l— f)+ const. (4-59)

and expand L(f) in a Taylor series about f The first terms are

= uh) - (4-60)
where
. _ J(=)
ol = = (4-61)

and so, to this approximation, (4-57) is a gaussian, or normal, distribution:

g(fIDX)~ K exp {— M} (4-62)

202

and K is a normalizing constant. As explained in Appendix E, (4-62) is actually an excellent
approximation to (4-57)in the entire interval (0 < f < 1), provided that n >> 1 and (N —n) >> 1.
Properties of the gaussian distribution are discussed in depth in Chapter 7.

Thus after observing n bad ones in N trials, the robot’s state of knowledge about f can be
described reasonably well by saying that it considers the most likely value of f to be just the
observed fraction of bad ones, and it considers the accuracy of this estimate to be such that the
interval f:l: o is reasonably likely to contain the true value. The parameter o is called the standard
deviation and o the variance of the pdf (4-62). More precisely, from numerical analysis of (4-62)
the robot assigns:

50% probability that the true value of f is contained in the interval f:l: 0.68 o,
90% probability that it is contained in f 4 1.650,
99% probability that it is contained in f 4 2.57 0.

As the number N of tests increases, these intervals shrink, according to (4-61), proportional to
N2 a common rule that arises repeatedly in probability theory.

In this way, we see that the robot starts in a state of “complete ignorance” about f; but as
it accumulates information from the tests, it acquires more and more definite opinions about f,
which correspond very nicely to common sense. Two cautions; (1) all this applies only to the case
where, although the numerical value of f is initially unknown, it was one of the conditions defining
the problem that f is known not to be changing with time, and (2) again we must warn against
the error of calling o the “variance of f”, which would imply that f is varying, and that o is a
real (i.e., measurable) physical property of f. That is one of the most common forms of the Mind
Projection Fallacy.
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It is really necessary to belabor this point: ¢ is not a real property of f, but only a property of
the probability distribution that the robot assigns to represent its state of knowledge about f. Two
robots with different information would, naturally and properly, assign different pdf’s for the same
unknown quantity f, and the one which is better informed will probably — and deservedly — be able
to estimate f more accurately; that is, to use a smaller o.

But as noted, we may consider a different problem in which f is variable if we wish to do so.
Then the mean—square variation s? of f over some class of cases will become a “real” property, in
principle measurable, and the question of its relation, if any, to the o of the robot’s pdf for that
problem can be investigated mathematically, as we shall do later in connection with time series.
The relation will prove to be: if we know ¢ but have as yet no data and no other prior information
about s, then the best prediction of s that we can make is essentially equal to ¢; and if we do have
the data but do not know ¢ and have no other prior information about o, then the best estimate of
o that we can make is nearly equal to s. These relations are mathematically derivable consequences
of probability theory as logic.

Indeed, it would be interesting, and more realistic for some quality—control situations, to
introduce the possibility that f might vary with time, and the robot’s job is to make the best
possible inferences about whether a machine is drifting slowly out of adjustment, with the hope of
correcting trouble before it became serious. Many other extensions of our problem occur to one:
a simple classification of widgets as good and bad is not too realistic; there is likely a continuous
gradation of quality, and by taking that into account we could refine these methods. There might
be several important properties instead of just “badness” and “goodness” (for example, if our
widgets are semiconductor diodes, forward resistance, noise temperature, rf impedance, low—level
rectification efficiency, etc.), and we might also have to control the quality with respect to all of
these. There might be a great many different machine characteristics, instead of just Hy, about
which we need plausible inference.

You see that we could spend years and write volumes on all the further ramifications of this
problem, and there is already a huge literature on it. But although there is no end to the complicated
details that can be generated, there is in principle no difficulty in making whatever generalization
you need. It requires no new principles beyond what we have given.

In the problem of detecting a drift in machine characteristics, you would want to compare
our robot’s procedure with the ones proposed long ago by Shewhart (1931). You would find that
Shewhart’s methods are intuitive approximations to what our robot would do; in some of the cases
involving a normal distribution they are the same (but for the fact that Shewhart was not thinking
sequentially; he considered the number of tests determined in advance). These are, incidentally,
the only cases where Shewhart felt that his proposed methods were fully satisfactory.

This is really the same problem as that of detecting a signal in noise, which we shall study in
more detail later on.

Simple and Compound (or Composite) Hypotheses

The hypotheses (A, B, C, H) that we have considered thus far refer to a single parameter f = M /N,
the unknown fraction of bad widgets in our box, and specify a sharply defined value for f (in Hy,
it can be any prescribed number in 0 < f < 1). Such hypotheses are called simple, because if we
formalize this a bit more by defining an abstract “parameter space” {} consisting of all values of
the parameter or parameters that we consider to be possible, such an hypothesis is represented by
a single point in €.

But testing all the simple hypotheses in {2 may be more than we need for our purposes. It may
be that we care only whether our parameter lies in some subset §2; of Q or in the complementary
set 3 = Q — Qy, and the particular value of f in that subset is uninteresting (i.e., it would make
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no difference for what we plan to do next). Can we proceed directly to the question of interest,
instead of requiring our robot to test every simple hypothesis in 47

The question is, to us, trivial; our starting point, Eq. (4-3), applies for all hypotheses H,
simple or otherwise, so we have only to evaluate the terms in it for this case. But in (4-54) we
have done almost all of that, and need only one more integration. Suppose that if f > 0.1 then we
need to take some action (stop the machine and readjust it), but if f < 0.1 we should allow it to
continue running. The space € then consists of all f in [0, 1], and we take Q4 as comprising all f
in (0.1, 1], H as the hypothesis that f is in €. Since the actual value of f is not of interest, f is
now called a nuisance parameter; and we want to get rid of it.

In view of the fact that the problem has no other parameter than f and different intervals
df are mutually exclusive, the discrete sum rule P(A; 4+ .-+ + A,|B) = >, P(A;|B) will surely
generalize to an integral as the A; become more and more numerous. Then the nuisance parameter
[ is removed by integrating it out of (4-54):

o PO = g1 )
POIDX) = T e = = g (X df (4-63)

In the case of a uniform prior pdf for f, we may use (4-54) and the result is the incomplete Beta
function: the posterior probability that f is in any specified interval (a < f < b) is

Pla< f<bDX)= % / (1= HNTdf (4-64)

and in this form computer evaluation is easy.

More generally, when we have any composite hypothesis to test, probability theory tells us
that the proper procedure is simply to apply the principle (4-1) by summing or integrating out,
with respect to appropriate priors, whatever nuisance parameters it contains. The conclusions thus
found take fully into account all of the evidence contained in the data and in the prior information
about the parameters. Probability theory used as logic enables us to test, with a single principle,
any number of hypotheses, simple or compound, in the light of the data and prior information. In
later Chapters we shall demonstrate these properties in many quantitatively worked out examples.

COMMENTS

Etymology: Our opening quotation from John Craig (1699) is from a curious work on the proba-
bilities of historical events, and how they change as the evidence changes. Craig’s work was ridiculed
mercilessly in the 19’th Century; and indeed, his applications to religious issues do seem weird to us
today. But S. M. Stigler (1986) notes that Craig was writing at a time when the term “probability”
had not yet settled down to its present technical meaning, as referring to a (0-1) scale; and if we
merely interpret Craig’s “probability of an hypothesis” as our log-odds measure (which we have
seen to have in some respects a more primitive and intuitive meaning than probability), Craig’s
reasoning was actually quite good, and may be regarded as an anticipation of what we have done
in this Chapter.

Today, the logarithm—of-odds {u = log[p/(1—p)]} has proved to be such an important quantity
that it deserves a shorter name; but we seem to have trouble finding one. 1. J. Good (1950) was
perhaps the first author to stress its importance in a published work, and he proposed the name
lods, but the term has a leaden ring to our ears, as well as a non—descriptive quality, and it has
never caught on.

Our same quantity (4-8) was used by Alan Turing and I. J. Good from 1941, in classified
cryptographic work in England during World War II. Good (1980) later reminisced about this
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briefly, and noted that Turing coined the name “deciban” for it. This has not caught on, presumably
because nobody today can see any rationale for it.

The present writer, in his lectures of 1955-1964 (for example, Jaynes, 1958), proposed the
name evidence, which is intuitive and descriptive in the sense that for given proportions, twice as
many data provide twice as much evidence for an hypothesis. This was adopted by Tribus (1969),
but it has not caught on either.

More recently, the term logit for U = log[y/(a — y)] where {y;} are some items of data and
a is chosen by some convention such as a = 100, has come into use. Likewise, graphs using U for
one axis, are called logistic. For example, in one commercial software graphics program, an axis
on which values of U are plotted is called a “logit axis” and regression on that graph is called
“logistic regression”. There is at least a mathematical similarity to what we do here, but not any
very obvious conceptual relation because U is not a measure of probability. In any event, the term
“logistic” had already an established usage dating back to Poincaré and Peano, as referring to the
Russell-Whitehead attempt to reduce all mathematics to logic.

In the face of this confusion, we propose and use the following terminology. Note that we need
two terms; the name of the quantity, and the name of the units in which it is measured. For the
former we have retained the name evidence, which has at least the merit that it has been defined,
and used consistently with the definition, in previously published works. One can then use various
different units, with different names. In this Chapter we have measured evidence in decibels because
of its familiarity to scientists, the ease of finding numerical values, and the connection with the
base 10 number system which makes the results intuitively clear.

What Have We Accomplished?

The things which we have done in such a simple way in this Chapter have been, in one sense,
deceptive. We have had an introduction, in an atmosphere of apparent triviality, into almost every
kind of problem that arises in the hypothesis testing business. But do not be deceived by the
simplicity of our calculations into thinking that we have not reached the real nontrivial problems
of the field. Those problems are only straightforward mathematical generalizations of what we
have done here, and the mathematically mature reader who has understood this Chapter can now
solve them for himself, probably with less effort than it would require to find and understand the
solutions available in the literature.

In fact, the methods of solution that we have indicated have far surpassed, in power to yield
useful results, the methods available in the conventional non—Bayesian literature of hypothesis
testing. To the best of our knowledge, no comprehension of the facts of multiple hypothesis testing,
as illustrated in Fig. 4.1, can be found in the orthodox literature (which explains why the principles
of multiple hypothesis testing have been controversial in that literature). Likewise, our form of
solution of the compound hypothesis problem (4-63) will not be found in the “orthodox” literature
of the subject.

It was our use of probability theory as logic that has enabled us to do so easily what was impos-
sible for those who thought of probability as a physical phenomenon associated with “randomness”.
Quite the opposite; we have thought of probability distributions as carriers of information. At the
same time, under the protection of Cox’s theorems, we have avoided the inconsistencies and ab-
surdities which are generated inevitably by those who try to deal with the problems of scientific
inference by inventing ad hoc devices instead of applying the rules of probability theory. For a
devastating criticism of these devices, see the book review by Pratt (1961).

However, it is not only in hypothesis testing that the foundations of the theory matter for

applications. As indicated in Chapter 1 and Appendix A, our formulation was chosen with the aim
of giving the theory the widest possible range of useful applications. To drive home how much the
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scope of solvable problems depends on the chosen foundations, the reader may try the following
exercise:

Exercise 4.6. In place of our product and sum rules, Ruelle (1991, p. 17) defines the ‘mathe-
matical presentation’ of probability theory by three basic rules, which are in our notation:

If A and B are mutually exclusive, p(A+ B) = p(A
if A and B are independent, p(AB) =p(A

Survey our last two Chapters, and determine how many of the applications that we solved in
Chapters 3 and 4 could have been solved by application of these rules. Hints: If A and B are not
independent, is p(AB) determined by them? Is the notion of conditional probability defined?
Ruelle makes no distinction between logical and causal independence; he defines ‘independence’
of A and B as meaning: “the fact that one is realized has in the average no influence on the
realization of the other.” It appears, then, that he would always accept (4-27) for all n.

This exercise makes it clear why conventional expositions do not consider scientific inference
to be a part of probability theory. Indeed, orthodox statistical theory is helpless to deal with such
problems because, thinking of probability as a physical phenomenon, it recognizes the existence
only of sampling probabilities; thus it denies itself the technical tools needed to incorporate prior
information, eliminate nuisance parameters, or to recognize the information contained in a posterior
probability. But even most of the sampling theory results that we derived in Chapter 3, are beyond
the scope of the mathematical and conceptual foundation given by Ruelle, as are virtually all of
the parameter estimation results to be derived in Chapter 6.

We shall find later that our way of treating compound hypotheses illustrated here also generates
automatically the conventional orthodox significance tests or superior ones; and at the same time
gives a clear statement of what they are testing and their range of validity, previously lacking in
the orthodox literature.

Now that we have seen the beginnings of this situation, before turning to more serious and
mathematically more sophisticated problems, we shall relax and amuse ourselves in the next Chap-
ter by examining how probability theory as logic can clear up all kinds of weird errors in the older
literature, that arose from very simple misuse of probability theory, but whose consequences were
relatively trivial. In Chapter 15 we consider some more complicated and serious errors, that are
causing major confusion in the current literature. Finally, in Chapter 17 and Section B on Ad-
vanced Applications we shall see some even more serious errors of orthodox thinking, which today
block the progress of science and endanger the public health and safety.



