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CHAPTER 8

SUFFICIENCY, ANCILLARITY, AND ALL THAT

In the last �ve Chapters we have examined the use of probability theory in problems that, although
elementary technically, illustrated a fairly good sample of typical current applications. Now we are
in a position to look back over these examples and note some interesting features that they have
brought to light. It is useful to understand these features, for tactical reasons. Many times in the
past when one tried to conduct inference by applying intuitive ad hoc devices instead of probability
theory, they would not work acceptably unless some of these special circumstances were present,
and others absent. Thus they were of major theoretical importance in orthodox statistics, although
that theory was never developed far enough to give a real understanding.

However, none of the material of the present Chapter is really needed in our applications; for
us, these are incidental details that take care of themselves as long as we obey the rules. That is,
if we merely apply the rules derived in Chapter 2, strictly and consistently in every problem, they
lead us to do the right thing and arrive at the optimal inferences for that problem automatically,
without our having to take any special note of these things. For us, they have rather a \general
cultural value" in helping us to understand better the inner workings of probability theory, and the
predictable consequences of failure to obey the Chapter 2 rules.

Su�ciency

In our examples of parameter estimation, probability theory sometimes does not seem to use all the
data that we o�er it. In Chapter 6 when we estimated the parameter � of a binomial distribution
from data on n trials, the posterior pdf for � depended on the data only through the number n of
trials and the number r of successes; all information about the order in which success and failure
occurred was ignored. With a rectangular sampling distribution in � � x � �, the joint posterior
pdf for �; � used only the extreme data values (xmin; xmax) and ignored the intermediate data.

Likewise, in Chapter 7, with a Gaussian sampling distribution and a data set D � fx1 � � �xng,
the posterior pdf for the parameters �; � depended on the data only through n and their �rst two
moments (�x; x2; n). The (n � 2) other properties of the data convey a great deal of additional
information of some kind; yet probability theory ignored them.

Is probability theory failing to do all it could here? No, the proofs of Chapter 2 have precluded
that possibility; the rules being used are the only ones that can yield unique answers while agreeing
with the qualitative desiderata. It seems, then, that the unused parts of the data must be irrelevant
to the question we are asking.y But can probability theory itself con�rm this conjecture for us in
a more direct way?

This introduces us to a quite subtle theoretical point about inference. Special cases of the
phenomenon were noted by Laplace [Theorie analytique, 1824 edition, Supp. V]. It was general-
ized and given its present name 100 years later by R. A. Fisher (1922), and its signi�cance for
Bayesian inference was noted by Je�reys (1939). Additional understanding of its role in inference
was achieved only recently, in the resolution of the `Marginalization Paradox' discussed in Chapter
15.

y Of course, when we say that some information is `irrelevant' we mean only that we don't need it for our

present purpose; it might be crucially important for some other purpose what we shall have tomorrow.
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If certain aspects of the data are not used when they are known, then presumably it would not
matter (we should come to the same �nal conclusion) if they were unknown. Thus if the posterior
pdf for a parameter � is found to depend on the data D = fx1 � � �xng only through a function
s(x1 � � �xn) (call it `property S'), then it seems plausible that given s alone we should be able to
draw the same inferences about �. If we could demonstrate this, it would con�rm that the unused
parts of the data were indeed irrelevant in the sense just conjectured.

With a sampling density function p(x1 � � �xnj�) and prior p(�jI) = f(�), the posterior pdf using
all the data is

p(�jD; I) = h(�jD) =
f(�) p(x1 � � �xnj�)R

d�0 f(�0) p(x1 � � �xnj�0)
(8{1)

Note that we are not assuming independent or exchangeable sampling here; the sampling pdf need
not factor in the form p(x1 � � �xnj�) = �i p(xij�) and the marginal probabilities p(xij�) = ki(xi; �)
and p(xj j�) = kj(xj ; �) need not be the same function. Now carry out a change of variables
(x1 � � �xn)! (y1 � � �yn) in the sample space Sx, such that y1 = s(x1 � � �xn), and choose (y2 � � �yn)
so that the jacobian

J =
@(y1 � � �yn)
@(x1 � � �xn)

(8{2)

is bounded and nonvanishing everywhere on Sx. Then the change of variables is a 1:1 mapping of
Sx onto Sy , and the sampling density

g(y1 � � �ynj�) = J�1 p(x1 � � �xnj�) (8{3)

may be used just as well as p(x1 � � �xnj�) in the posterior pdf :

h(�jD) =
f(�) g(y1 � � �ynj�)R

d�0 f(�0) g(y1 � � �ynj�0)
(8{4)

since the jacobian, being independent of �, cancels out.

Then property S is the statement that for all � 2 S� , (8{4) is independent of (y2 � � �yn). Writing
this condition out as derivatives set to zero, we �nd that it de�nes a set of n�1 simultaneous integral
equations (actually, only orthogonality conditions) that the prior f(�) must satisfy:

Z
S�

Ki(�; �
0) f(�0) d�0 = 0 ;

(
� 2 S�

2 � i � n

)
(8{5)

where the ith kernel is

Ki(�; �
0) � g(yj�) @g(yj�

0)

@yi
� g(yj�0) @g(yj�)

@yi
(8{6)

and we used the abbreviation y � (y1 � � �yn), etc. It is antisymmetric: Ki(�; �0) = �Ki(�0; �).
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Fisher Su�ciency

If (8{5) holds only for some particular prior f(�), then Ki(�; �
0) need not vanish; in its dependence

on �0 it needs only to be orthogonal to that particular function. But if, as Fisher required, (8{5)
is to hold for all f(�), then Ki(�; �

0) must be orthogonal to a complete set of functions f(�0); thus
zero almost everywhere for (2 � i � n). Noting that the Kernel may be written in the form

Ki(�; �
0) = g(yj�) g(yj�0) @

@yi
log

�
g(yj�0)
g(yj�)

�
; (8{7)

this condition may be stated as: given any (�; �0), then for all possible samples [that is, all values of
fy1 � � �yn; �; �0g for which g(yj�) g(yj�0) 6= 0], the ratio [g(yj�0)=g(yj�)] must be independent of the
components (y2 � � �yn). Thus to achieve property S independently of the prior, g(yj�) must have
the functional form

g(y1 � � �ynj�) = q(y1j�)m(y2 � � �yn) : (8{8)

Integrating (y2 � � �yn) out of (8{8), we see that the function denoted by q(y1j�) is, to within a
normalization constant, the marginal sampling pdf for y1.

Transforming back to the original variables, Fisher su�ciency requires that the sampling pdf

has the form

p(x1 � � �xnj�) = p(sj�) b(x1 � � �xn) (8{9)

where p(sj�) is the marginal sampling density for s(x1 � � �xn).
Eq. (8{9) was given by Fisher (1922). If a sampling distribution factors in the manner (8{

8), (8{9), then the sampling pdf for (y2 � � �yn) is independent of �. This being the case, he felt
intuitively that the values of (y2 � � �yn) can convey no information about �; full information should
be conveyed by the single quantity s, which he then termed a su�cient statistic. But Fisher's
reasoning was only a conjecture referring to a sampling theory context. We do not see how it
could be proved in that limited context, which made no use of the concepts of prior and posterior
probabilities.

Probability theory as logic can demonstrate this property directly without any need for con-
jecture. Indeed, using (8{9) in (8{1), the function b(x) cancels out and we �nd immediately the
relation

h(�jD) / f(�) p(sj�) : (8{10)

Thus if (8{10) holds, then s(x1 � � �xn) is a su�cient statistic in the sense of Fisher, and in Bayesian
inference with the assumed model (8{1), knowledge of the single quantity s does indeed tell us
everything about � that is contained in the full data set (x1 � � �xn); and this will be true for all
priors f(�).

The idea generalizes at once to more variables. Thus, if the sampling distribution factors in
the form g(y1 � � �ynj�) = h(y1; y2j�)m(y3 � � �yn), we would say that y1(x1 � � �xn) and y2(x1 � � �xn)
are jointly su�cient statistics for � and in this, � could be multidimensional. If there are two
parameters �1; �2 such that there is a coordinate system fyig in which

g(y1 � � �ynj�1; �2) = h(y1j�1) k(y2j�2)m(y3 � � �yn) (8{11)

then y1(x1 � � �xn) is a su�cient statistic for �1, and y2 is a su�cient statistic for �2; and so on.
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Fisher su�ciency was of major importance in orthodox (non{Bayesian) statistics, because it
had so few criteria for choosing an estimator. It had, moreover, a fundamental status lacking in
other criteria because for the �rst time, the notion of information appeared in orthodox thinking.
If a su�cient statistic for � exists, it is hard to justify using any other for inference about �. From
a Bayesian standpoint one would be, deliberately, throwing away some of the information in the
data, that is relevant to the problem.z

The Blackwell { Rao Theorem: Arguments in terms of information content had almost no
currency in orthodox theory, but a theorem given by D. Blackwell and C. R. Rao lackwell, Davidin
the 1940's did establish a kind of theoretical justi�cation for the use of su�cient statistics in
orthodox terms. Let s(x1 � � �xn) be a Fisher su�cient statistic for �, and �(x1 � � �xn) any proposed
estimator for �. By (8{9) the joint pdf for the data conditional on s:

p(x1 � � �xnjs; �) = b(x)p(sjx; �) = b(x)�(s� s(x)) (8{12)

is independent of �. Then the conditional expectation

�0(s) � h�js; �i = E(�js; �) (8{13)

is also independent of �, so �0 is a function only of the xi, and so is itself a conceivable estimator
for �, which depends on the observations only through the su�cient statistic: �0 = E(�js). The
theorem is then that the `quadratic risk' R(�; �) � E[(�� �)2j�] satis�es the inequality

R(�; �0) � R(�; �) ; (8{14)

for all �. If R(�; �) is bounded, there is equality if and only if �0 = �; that is, if � itself depends
on the data only through the su�cient statistic s.

In other words, given any estimator � for �, if a su�cient statistic s exists, then we can �nd
another estimator �0 that achieves a lower or equal risk and depends only on s. Thus the best
estimator we can �nd by the criterion of quadratic risk will always depend on the data only through
s. A proof is given by M. H. deGroot (1986, p. 373); the orthodox notion of risk is discussed further
in Chapters 13, 14. But if a su�cient statistic does not exist, orthodox estimation theory is in real
trouble as we shall see.eGroot, M. H.

This argument is not compelling to a Bayesian, because the criterion of risk is a purely
sampling{theory notion that ignores prior information. But Bayesians have a far better justi�-
cation for using su�cient statistics; it is straightforward mathematics, evident from (8{9), (8{10)
that if a su�cient statistic exists, Bayes' theorem will lead us to it automatically, without our
having to take any particular note of the idea. Indeed, far more is true: from the proofs of Chapter
2, Bayes' theorem will lead us to the optimal inferences? whether or not a su�cient statistic exists.
So for us, su�ciency is not a fundamental or essential theoretical consideration; only a pleasant
convenience, a�ecting the amount of computation but not the quality of the inference.

z This rather vague statement becomes a de�nite theorem when where we learn that if we measure infor-

mation in terms of entropy, then zero information loss in going from the full data set D to a statistic s is

equivalent to su�ciency of s. The beginnings of this appeared long ago, in the Pitman{Koopman theorem

(1936); we give a modern version in Chapter 11.
? That is, optimal in the aforementioned sense that no other procedure can yield unique results while

agreeing with our desiderata.
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Generalized Su�ciency

However, what Fisher could not have realized because of his failure to use priors, is that the proviso
for all priors is essential here. Fisher su�ciency, Eq. (8{9), is the strong condition, necessary to
achieve property S independently of the prior. But what was realized only recently is that property
S may hold under weaker conditions, that depend on which prior we assign. Thus the notion of
su�ciency, which originated in Bayesian considerations, actually has a wider meaning in Bayesian
inference than in sampling theory.

To see this, note that since the integral equations (8{5) are linear, we may think in terms of
linear vector spaces. Let the class of all priors span a function space (Hilbert space) H of functions
on the parameter space S� . If property S holds only for some subclass of priors f(�) 2 H 0 that
span a subspace H 0 � H , then in (8{5) it is required only that the projection of Ki(�; �

0) onto that
subspace vanishes. Then Ki(�; �

0) may be an arbitrary function on the complementary function
space (H �H 0) of functions orthogonal to H 0.

This new understanding is that, for some priors, it is possible to have `e�ective su�cient
statistics' even though a su�cient statistic in the sense of Fisher does not exist. Given any speci�ed
function s(x1 : : : xn) and sampling density p(x1 : : : xnj�), this determines a kernel Ki(�; �

0) which
we may construct by the above relations. If this kernel is incomplete [i.e. as (�; i) vary over
their range, it does not span the entire function space S�0 ], then the set of simultaneous integral
equations (8{46) has nonvanishing solutions. If there are nonnegative solutions, they will determine
a subclass of priors for which s would play the role of a su�cient statistic.

Then the possibility seems open that for di�erent priors, di�erent functions s(x1 : : :xn) of the
data may take on the role of su�cient statistics. This means that use of a particular prior may

make certain particular aspects of the data irrelevant. Then a di�erent prior may make di�erent

aspects of the data irrelevant . One who is not prepared for this may think that a contradiction or
paradox has been found.

Therefore, in Bayesian inference it is important to understand these integral equations: are
they expressing trivialities, dangerous pitfalls that need to be understood; or useful new capa-
bilities for Bayesian inference, which Fisher and Je�reys never suspected? To show that we are
not just speculating about an empty case, note that we have already seen an extreme example
of this phenomenon, in the strange properties that use of the binomial monkey prior had in Urn
sampling (Chapter 6); it made all of the data irrelevant, although with other priors all of the data
were relevant. Let us seek a better understanding through a few more speci�c examples of this
phenomenon.

First, let us transform the above relations back into the x� coordinates. Substituting (8{3) into
(8{7), the Jacobian cancels out of the logarithm term. Then the derivative transforms according
to

@

@yi
=

nX
j=1

@xj

@yi

@

@xj
(8{a)

and we note for later purposes that the derivatives appearing in J and J�1 are reciprocal matrices:

nX
j=1

@xj

@yi

@yk

@xj
= �ik : (8{z )

Now we have

Ki(�; �
0) = J�2 p(xj�) p(xj�0)

X
j

@xj

@yi

@

@xj
log

p(xj�)
p(xj�0) (8{b)
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and in the integral equation (8{5) any common factor independent of �0 and nonzero may be
dropped; so the necessary and su�cient condition for y1 to be an e�ective su�cient statistic for �
with the prior f(�), is the system of integral equations

Z
p(xj�0)

X
j

@xj

@yi

@

@xj
log

p(xj�0)
p(xj�) f(�

0) d�0 = 0 ; 2 � i � n (8{c )

******************* MORE HERE! *********************

We have seen that Fisherian su�cient statistics exist for the binomial, rectangular, and Gaus-
sian sampling distributions. But consider the Cauchy distribution

p(x1 � � �xnj�; I) =
nY
i=1

1

�

1

1 + (xi � �)2
(8{19)

This does not factor in the manner (8{9), and so there is no Fisher su�cient statistic. With a
Cauchy sampling distribution, it appears that no part of the data is irrelevant; every scrap of it is
used in Bayesian inference, and it makes a di�erence in our inferences about � (that is, in details
of the posterior pdf for �).

*************************** MORE HERE! ****************************

Su�ciency Plus Nuisance Parameters

In the above the parameter � might have been multidimensional, and the same general arguments
would go through in the same way. The question becomes much deeper if we now suppose that
there are two parameters �; � in the problem, but we are not interested in �, so for us the question of
su�ciency concerns only the marginal posterior pdf for �. Factoring the prior p(�; �jI) = f(�) g(�j�),
we may write the desired posterior pdf as

h(�jD) =

R
d� p(�; �) f(x1 � � �xnj�; �)R R
d�d� p(�; �) f(x1 � � �xnj�; �)

=
f(�)F (x1 � � �xnj�)R
d�f(�)F (x1 � � �xnj�)

(8{20)

where

F (x1 � � �xnj�) �
Z
d� p(�j�; I) f(x1 � � �xnj�; �) (8{21)

Since this has the same mathematical form as (8{1), the steps (8{5) { (8{9) may be repeated and the
same result must follow; given any speci�ed p(�j�; I) for which the integral (8{21) converges, if we
then �nd that the marginal distribution for � has property S for all priors f(�), then F (x1 � � �xnj�)
must factorize in the form

F (x1 � � �xnj�) = F �(rj�)B(x1 � � �xn) (8{22)

But the situation is entirely di�erent because F (x1 � � �xnj�) no longer has the meaning of a sampling
density, being a di�erent function for di�erent priors p(�j�; I). Now fF; F �; Bg are all functionals
of p(�j�; I).y

**************** MORE HERE! TO DO: ******************

y In orthodox statistics F �(rj�)would be interpreted as the sampling density to be expected in a compound

experiment in which � is held �xed but � is varied at random from one trial to the next, according to the

distribution p(�j�; I).
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A Cauchy distribution has no Fisherian su�cient statistic. Is there a class of priors for which
it has a conditional su�cient statistic after all?

What is the most general prior for which
P

x2i is a su�cient statistic?

What is the most general prior for which x21 � x22 is a su�cient statistic?

What is the most general sampling distribution for which
P

x2i is a su�cient statistic?

What is the most general sampling distribution for which xmax; xmin, the maximum and
minimum observed values, are jointly su�cient statistics?

What is the most general sampling distribution for which x2 � n�1
P

x2i and �x � n�1
P

xi
are jointly su�cient statistics?

The Likelihood Principle

In applying Bayes' theorem the posterior pdf for a parameter � is always a product of a prior p(�jI)
and a likelihood function L(�) / p(Dj�; I); the only place where the data appear is in the latter.
Therefore it is manifest that

Within the context of the assumed model, the likelihood function L(�) from dataD contains
all the information about � that is contained in D.

For us, this is an immediate and mathematically trivial consequence of the product rule of prob-
ability theory, and is no more to be questioned than the multiplication table. But for those who
think of probability as a physical phenomenon arising from `randomness' rather than a carrier of
incomplete information, the above statement { since it involves only the sampling distribution {
has a meaning independent of the product rule and Bayes' theorem. They call it the \Likelihood
Principle", and its status as a valid principle of inference has been the subject of long controversy,
still continuing today.

An elementary argument for the principle, given by George Barnard (1947), is that irrelevant
data ought to cancel out of our inferences. He stated it thus: Suppose that in addition to obtaining
the data D we 
ip a coin and record the result Z = H or T . Then the sampling probability for all
our data becomes, as Barnard would have written it,

p(DZj�) = p(Dj�) p(Z) (8{23)

Then he reasoned that, obviously, the result of a coin 
ip can tell us nothing more about the
parameter � beyond what the data D have to say; and so inference about � based on DZ ought to
be exactly the same as inference based on D alone. From this he drew the conclusion that constant
factors in the likelihood must be irrelevant to inferences; that is, inferences about � may depend
only on the ratios of likelihoods for di�erent values:

L1

L2
=

p(DZj�1I)
p(DZj�2I)

=
p(Dj�1I)
p(Dj�2I)

(8{24)

which are the same whether Z is or is not included. This is commonly held to be the �rst statement
of the likelihood principle by an orthodox statistician, but not all found it convincing.

Alan Birnbaum (1962) gave the �rst attempted \proof" of the likelihood principle to be gener-
ally accepted by orthodox statisticians. From the discussion following his paper we see that many
regarded this as a major historical event in statistics. He again appeals to coin tossing, but in
a di�erent way, through the principle of Fisher su�ciency plus a \conditionality principle" which
appeared to him more primitive:

Conditionality Principle: Suppose we can estimate � from either of two experiments, E1

and E2. If we 
ip a coin to decide which to do, then the information we get about �
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should depend only on the experiment that was actually performed. That is, recognition
of an experiment that might have been performed but was not, cannot tell us anything
about �.

But Birnbaum's argument was not accepted by all orthodox statisticians, and even Birnbaum
himself seems to have had later doubts. Kempthorne & Folks (1974) and Fraser (1980) continued
to attack the likelihood principle and deny its validity. R. A. Fisher had accepted the likelihood
principle long before, but he continued to denounce the use of Bayes' theorem on the ideological
grounds that we, like Harold Je�reys, do not require all our probabilities (or indeed, any of them)
to be frequencies in any `random experiment'. For much further discussion, see Edwards (1974),
or Berger & Wolpert (1988). The issue becomes even more complex and confusing in connection
with the notion of ancillarity, discussed below.

Indeed, coin 
ip arguments cannot be accepted unconditionally if they are to be taken literally;
particularly by a physicist who is aware of all the complicated things that happen in real coin 
ips,
as described in Chapter 10. If there is any logical connection between � and the coin so that
knowing � would tell us anything about the coin 
ip, then knowing the result of the coin 
ip must
tell us something about �. For example, if we are measuring the gravitational �eld by the period of
a pendulum, but the coin is tossed in that same gravitational �eld there is a clear, if rather loose,
logical connection. Both Barnard's argument and Birnbaum's conditionality principle contain an
implicit hidden assumption that this is not the case. Presumably, they would reply that without
saying so explicitly, they really meant \coin 
ip" in a more abstract sense of some binary experiment
totally detached from � and the means of measuring it; but then, the onus was on them to de�ne
exactly what that binary experiment was, and they never did this.

In our view this line of thought takes us o� into an in�nite regress of irrelevancies; in our
system the likelihood principle is already proved directly from the product rule of probability
theory, independently of all considerations of coin 
ips or any other logically independent auxiliary
experiment.

But it is important to note that the likelihood principle, like the likelihood function, refers
only to the context of a speci�ed model which is not being questioned ; seen in a wider context,
this function may or may not contain all the information in the data that we need to make the
best estimate of �, or to decide whether to take more data or stop the experiment now. Is there
additional external evidence that the apparatus is deteriorating? Or, is there reason to suspect
that our model may not be correct? Perhaps a new parameter � is needed. But to claim that the
need for additional information like this is a refutation of the likelihood principle, is only to display
a misunderstanding of what the likelihood principle is.

****************** MORE TO COME HERE! *************

E�ect of Nuisance Parameters

So now we need to investigate what probability theory has to say about the complication of extra
parameters. Let there be a nuisance parameter � (possibly multidimensional) which is common to
both experiments, but which could have di�erent values in them. Then our conclusion from the
�rst experiment would become

p(H jAI) =
Z

d�p(H�jAI) =
Z
d�p(H j�AI) p(�jAI) = a???

************************* MORE COMING! *********************
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Use of Ancillary Information

The idea of auxiliary coin 
ips can, however, be generalized to a constructive and useful principle.
If we have a record of any quantity z that is known to be correlated with, or otherwise logically
related to, either the noise or the parameters, we can use this extra information to improve our
estimates of both the noise and the parameters. A special case was noted by R. A. Fisher (1934),
who coined the term \ancillary statistic" for z. Let

� = parameters (interesting or uninteresting)

E = e1; � � � ; en; noise

D = d1; � � � ; dn; data

di = f(ti; �) + ei; model

(8{25)

But now we add

Z = z1; � � � ; zm ancillary data : (8{26)

We want to estimate � from the posterior pdf , p(�jD;Z; I), and direct application of Bayes' theorem
gives

p(�jDZI) = p(�jI) p(DZj�I)
p(DZjI) (8{27)

in which Z appears as part of the data. But now we suppose that Z has, by itself, no direct
relevance to �:

p(�jZ; I) = p(�jI) (8{28)

This is the essence of what Fisher meant by the term \ancillary", although his ideology did not
permit him to state it this way (since he admitted only sampling distributions, he was obliged to
de�ne all properties in terms of sampling distributions). He would say instead that ancillary data
have a sampling distribution independent of �:

p(Zj�; I) = p(ZjI) (8{29)

which he would interpret as: � exerts no physical in
uence on Z. But from the product rule

p(�; ZjI) = p(�jZI) p(ZjI) = p(Zj�I) p(�jI) (8{30)

we see that from the standpoint of probability theory as logic, (8{28) and (8{29) are equivalent;
either implies the other. Expanding the likelihood ratio by the product rule and using (8{29),

p(DZj�I)
p(DZjI) =

p(Dj�ZI)
p(DjZI) (8{31)

Then in view of (8{28) we can rewrite (8{27) equally well as

p(�jDZI) = p(�jZI)p(Dj�ZI)
p(DjZI) (8{32)

and now the ancillary information appears to be part of the prior information.

A peculiar property of ancillary information is that whether we consider it part of the data
or part of the prior information, we are led to the same conclusions about �. Another is that the
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relation between � and Z is a reciprocal one; had we been interested in estimating Z but knew �,
then � would appear as an \ancillary statistic". To see this most clearly, note that the de�nitions
(8{28) and (8{29) of an ancillary statistic are equivalent to the factorization:

p(�ZjI) = p(�jI) p(ZjI) : (8{33)

Now recall how we handled this before, when our likelihood was only

L0(�) / p(Dj�I) (8{34)

Because of the model equation (8{25), if � is known, then the probability of getting any datum di
is just the probability that the noise would have made up the di�erence:

ei = di � f(ti; �) (8{35)

So if the prior pdf for the noise is a function

p(Ej�I) = u(e1 � � �en; �) = u(feig; �) (8{36)

we had

p(Dj�I) = u(fdi � f(ti; �)g; �); (8{37)

the same function of fdi � f(ti; �g. In the special case of a white gaussian noise pdf independent
of �, this led to Eq. (X.YZ).

Our new likelihood function (8{31) can be dealt with in the same way, only in place of (8{37)
we shall have a di�erent noise pdf , conditional on Z. Thus the e�ect of ancillary data is simply to
update the original noise pdf :

p(Ej�I)! p(Ej�ZI) (8{38)

and in general ancillary data that have any relevance to the noise will a�ect our estimates of all
parameters through this changed estimate of the noise.

In Equations (8{36) { (8{38) we have included � in the conditioning statement to the right of
the vertical stroke to indicate the most general case. But in all the cases examined in the orthodox
literature, knowledge of � would not be relevant to estimating the noise, so what they actually did
was the replacement

p(EjI)! p(EjZI) (8{39)

instead of (8{38).

Also, in the cases we have analyzed this updating is naturally regarded as arising from a joint
sampling distribution which is a function

p(DZjI) = w(e1 � � �en; z1 � � �zm) (8{40)

The previous noise pdf (8{36) is then a marginal distribution of (8{40):

p(DjI) = u(e1 � � �en) =
Z
dz1 � � �dzm w(e1 � � �en; z1 � � �zm); (8{41)

the prior pdf for the ancillary data is another marginal distribution:
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p(ZjI) =
Z
de1 � � �denw(e1 � � �en; z1 � � �zm); (8{42)

and the conditional distribution is

p(DjZI) = p(DZjI)
p(ZjI) =

w(ei; zj)

v(zj)
: (8{43)

Fisher's original application, and the ironic lesson it had for the relation of Bayesian and sampling
theory methods, is explained in the Comments at the end of this Chapter.

Relation to the Likelihood Principle

The close connection of this to Barnard's form of the likelihood principle does not seem to have
been noted before; but we shall have a contradiction unless we restate Barnard's principle more
carefully. In accordance with universal custom in orthodox statistics, Barnard did not make any
explicit use of, or mention of, any prior information I , so if we try to rewrite his independence
condition in our notation it becomes

p(DZj�I) = p(Dj�I) p(ZjI) : (8{44)

But this is the same as our de�nition of an ancillary statistic; so it appears by Barnard's reasoning
that ancillary statistics should be irrelevant to inference!

******************************************************************

Ki(�; �
0) �

�
g(yj�) @g(yj�

0)

@yi
� g(yj�0) @g(yj�)

@yi

�
; (8{45)

Asymptotic Likelihood: Fisher Information

Given a data set D � fx1 � � �xng, the log likelihood is

1

n
logL(�) =

1

n

nX
i=1

log p(xij�) (8{46)

What happens to this function as we accumulate more and more data? The usual assumption is
that as n!1, the sampling distribution p(xj�) is actually equal to the limiting relative frequencies
of the various data values xi. We know of no case where one could actually know this to be true in
the real world; so the following heuristic argument is all that is justi�ed. If this assumption were
true, then we would have asymptotically as n!1,

1

n
logL(�)!

Z
p(xj�0) log p(xj�) dx (8{47)

where �0 is the true value, presumed unknown. Denoting the entropy of the true density by

H0 = �
Z
p(xj�0) log p(xj�0)dx

we have for the asymptotic likelihood function
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1

n
logL(�) +H0 =

Z
p(xj�0) log

p(xj�)
p(xj�0)

dx � 0 (8{48)

where we used the fact that for positive real q, we have log q � q � 1; with equality if and only if
q = 1. Thus we have equality in (8{48) if and only if p(xj�) = p(xj�0) for all x for which p(xj�0) > 0.
But if two di�erent values �; �0 of the parameter lead to identical sampling distributions, then they
are confounded: the data cannot distinguish between them. If the parameter is always `identi�ed'
in the sense that di�erent values of � always lead to di�erent sampling distributions for the data,
then we have equality in (8{48) if and only if � = �0, so the asymptotic likelihood function L(�)
reaches its maximum at the unique point � = �0.

Supposing the parameter multidimensional: � � f�1 � � ��mg and expanding about this
maximum, we have

log p(xj�) = log p(xj�0)�
1

2

mX
i;j=1

@2 log p(xj�)
@�i@�j

��i ��j (8{49)

or,

1

n
log

�
L(�)

L(�0

�
= �1

2

X
ij

Iij��i ��j (8{50)

where

Iij �
Z
dnx p(xj�0)

@2 log p(xj�)
@�i@�j

(8{51)

is called the Fisher Information Matrix.

***************************************************************

Combining Evidence from Di�erent Sources

\We all know that there are good and bad experiments. The latter accumulate in vain.

Whether there are a hundred or a thousand, one single piece of work by a real master{+by

a Pasteur, for example{+will be su�cient to sweep them into oblivion." - - - Henri
Poincar�e (1904, p. 141)

We all feel intuitively that the totality of evidence from a number of experiments ought to enable
better inferences about a parameter than does the evidence of any one experiment. Probability
theory as logic shows clearly how and under what circumstances it is safe to combine this evidence.
One might think na��vely that if we have 25 experiments, each yielding conclusions with an accuracy
of �10%, then by averaging them we get an accuracy of �10=

p
25 = �2%. This seems to be

supposed by a method currently in use in psychology and sociology, called meta{analysis (Hedges
& Olkin, 1985); but it is notorious that there are logical pitfalls in carrying this out.

The classical example showing the error of this kind of reasoning is the old fable about the
height of the Emperor of China. Supposing that each person in China surely knows the height of
the Emperor to an accuracy of at least � 1 meter, if there are N = 1; 000; 000; 000 inhabitants,
then it seems that we could determine his height to an accuracy at least as good as

1p
1; 000; 000; 000

m = 3� 10�5m = 0:03 millimeters (8{52)

merely by asking each person's opinion and averaging the results.
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The absurdity of the conclusion tells us rather forcefully that the
p
N rule is not always valid,

even when the separate data values are causally independent; it is essential that they be logically
independent. In this case, we know that the vast majority of the inhabitants of China have never
seen the Emperor; yet they have been discussing the Emperor among themselves and some kind
of mental image of him has evolved as folklore. Then knowledge of the answer given by one
does tell us something about the answer likely to be given by another, so they are not logically
independent. Indeed, folklore has almost surely generated a systematic error, which survives the
averaging; thus the above estimate would tell us something about the folklore, but almost nothing
about the Emperor.

We could put it roughly as follows:

error in estimate = S � Rp
N

(8{53)

where S is the common systematic error in each datum, R is the RMS `random' error in the
individual data values. Uninformed opinions, even though they may agree well among themselves,
are nearly worthless as evidence. Therefore sound scienti�c inference demands that, when this is a
possibility, we use a form of probability theory (i.e., a probabilistic model) which is sophisticated
enough to detect this situation and make allowances for it.

As a start on this, (8{53) gives us a crude but useful rule of thumb; it shows that, unless
we know that the systematic error is less than about 1/3 of the random error, we cannot be sure
that the average of a million data values is any more accurate or reliable than the average of ten.
As Henri Poincar�e put it: \The physicist is persuaded that one good measurement is worth many
bad ones." Indeed, this has been well recognized by experimental physicists for generations; but
warnings about it are conspicuously missing from textbooks written by statisticians, and so it is not
su�ciently recognized in the \soft" sciences whose practitioners are educated from those textbooks.

Let us investigate this more carefully using probability theory as logic. First we recall the chain
consistency property of Bayes' theorem. Suppose we seek to judge the truth of some hypothesis H ,
and we have two experiments which yield data sets A, B respectively. With prior information I ,
from the �rst we would conclude

p(H jAI) = p(H jI) p(AjHI)

p(AjI) : (8{54)

Then this serves as the prior probability when we obtain the new data B:

p(H jABI) = p(H jAI) p(BjAHI)

p(BjAI) = p(H jI) p(AjHI) p(BjAHI)

p(AjI) p(BjAI) : (8{55)

But

p(AjHI) p(BjAHI) = p(ABjHI)

p(AjI) p(BjAI) = p(ABjI)
(8{56)

so (8{55) reduces to

p(H jABI) = p(H jI) p(ABjHI)

p(ABjI) (8{57)

which is just what we would have found had we used the total evidence C = AB in a single
application of Bayes' theorem. This is the chain consistency property. We see from this that it is
valid to combine the evidence from several experiments if:

(1) the prior information I is the same in all;
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(2) the prior for each experiment includes also the results of the earlier ones.

To study one condition a time, let us leave it as an exercise for the reader to examine the e�ect
of violating (1), and suppose for now that we obey (1) but not (2), but we have from the second
experiment alone the conclusion

p(H jBI) = p(H jI) p(BjHI)

p(BjI) : (8{58)

Is it possible to combine the conclusions (8{54) and (8{58) of the two experiments into a single
more reliable conclusion? It is evident from (8{55) that this cannot be done in general; it is not
possible to obtain p(H jABI) as a function of the form

p(H jABI) = f [p(H jAI); p(H jBI)] (8{59)

because this requires information not contained in either of the arguments of that function. But if
it is true that p(BjAHI) = p(BjHI), then from the product rule written in the form

p(ABjI) = p(AjBHI) p(BjHI) = p(BjAHI) p(AjHI) ; (8{60)

it follows that p(AjBHI) = p(AjHI) and this will work. For this, the data sets A, B must be
logically independent in the sense that, given H and I , knowing either data set would tell us

nothing about the other.

But if we do have this logical independence, then it is valid to combine the results of the
experiments in the above na��ve way and we will in general improve our inferences by so doing. Thus
meta{analysis, applied without regard to these necessary conditions can be utterly misleading.

But the situation is still more subtle and dangerous; suppose one tried to circumvent this by
pooling all the data before analyzing them; that is, using (8{57). Let us see what could happen to
us.

Pooling the Data

The following data are real but the circumstances were more complicated than supposed in the
following scenario. Patients were given either of two treatments, the old one and a new one and the
number of successes (recoveries) and failures (deaths) recorded. In experiment A the data were:

Experiment A :

Failures Successes Percent Success

Old 16519 4343 20:8� 0:28
New 742 122 14:1� 1:10

in which the entries in the last column are of the form 100 � [p �
p
p(1� p)=n] indicating the

standard deviation to be expected from binomial sampling. Experiment B, conducted two years
later, yielded the data:

Experiment B :
3876 14488 78:9� 0:30
1233 3907 76:0� 0:60

In each experiment, the old treatment appeared slightly but signi�cantly better (that is, the di�er-
ences in p were greater than the standard deviations). The results were very discouraging to the
researchers.

But then one of them had a brilliant idea: let us pool the data, simply adding up in the manner
4343 + 14488 = 18831, etc. Then we have the contingency table
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Pooled Data :
20395 18831 48:0� 0:25
1975 4029 67:1� 0:61

and now the new treatment appears much better with overwhelmingly high signi�cance (the dif-
ference is over 20 times the sum of the standard deviations)! They eagerly publish this gratifying
conclusion, presenting only the pooled data; and become (for a short time) famous as great discov-
erers.

How is such an anomaly possible with such innocent{looking data? How can two data sets,
each supporting the same conclusion, support the opposite conclusion when pooled? Let the reader,
before proceeding, ponder these tables and form your own opinion of what is happening.

* * * * * * *

The point is that an extra parameter is clearly present. Both treatments yielded much better results
two years later. This unexpected fact is, evidently, far more important than the relatively small
di�erences in the treatments. Nothing in the data per se tells us the reason for this (better control
over procedures, selection of promising patients for testing, etc.) and only prior information about
further circumstances of the tests can suggest a reason.

Pooling the data under these conditions introduces a very misleading bias; the new treatment
appears better simply because in the second experiment six times as many patients were given the
new treatment, while fewer were given the old one. The correct conclusion from these data is that
the old treatment remains noticeably better than the new one; but another factor is present, that
is vastly more important than the treatment.

We conclude from this example that pooling the data is not permissible if the separate ex-
periments involve other parameters which can be di�erent in di�erent experiments. In equations
(8{58) { (8{60) we supposed no such parameters to be present, but real experiments almost always
have nuisance parameters which are eliminated separately in drawing conclusions.

In summary, the meta{analysis procedure is not necessarily wrong; but when applied without
regard to these necessary quali�cations it can lead to disaster. But we do not see how anybody could
have seen all these quali�cations by intuition alone; without the Bayesian analysis there is almost
no chance that one could apply meta{analysis safely; but whenever meta{analysis is appropriate,
the Bayesian procedure automatically reduces to the meta{analysis procedure. So the only safe
procedure is strict application of our Chapter 2 rules.

******************* MORE! ******************

Fine-grained Propositions. One objection that has been raised to probability theory as logic
notes a supposed technical di�culty in setting up problems. In fact, many seem to be perplexed
by it, so let us examine the problem and its resolution.

The Venn diagram mentality, noted at the end of Chapter 2, supposes that every probability
must be expressed as an additive measure on some set; or equivalently, that every proposition to
which we assign a probability must be resolved into a disjunction of elementary `atomic' propo-
sitions. Carrying this supposition over into the Bayesian �eld has led some to reject Bayesian
methods on the grounds that in order to assign a meaningful prior probability to some proposition
such asW � \the dog walks" we would be obliged to resolve it into a disjunction W = W1+W2+� � �
of every conceivable sub{proposition about how the dog does this, such as

W1 � \�rst it moves the right forepaw, then the left hindleg, then : : :"

W2 � \�rst it moves the right forepaw, then the right hindleg, then : : :"

: : :

But this can be done in any number of di�erent ways, and there is no principle that tells us
which resolution is \right". Having de�ned these sub{propositions somehow, there is no evident
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element of symmetry that could tell us which ones should be assigned equal prior probabilities.
Even the professed Bayesian L. J. Savage (1954) raised this objection, and thought that it made it
impossible to assign priors by the principle of indi�erence. Curiously, those who reasoned this way
seem never to have been concerned about how the orthodox probabilist is to de�ne his \universal
set" of atomic propositions, which performs for him the same function as would that in�nitely
�ne{grained resolution of the dog's movements.

So the 
ippant answer to: \Where did you get your prior hypothesis space?" is \The same
place where you got your universal set!" But let us be more constructive and analyze the supposed
di�culty.

Sam's Broken Thermometer. If Sam, in analyzing his data to test his pet theory, wants to en-
tertain the possibility that his thermometer is broken, does he need to enumerate every conceivable
way in which it could be broken? The answer is not intuitively obvious at �rst glance, so let

A � Sam's pet theory

H0 � The thermometer is working properly.

Hi � The thermometer is broken in the i'th way, 1 � i � n.

where, perhaps, n = 109. Then, although

p(AjDH0I) = p(AjH0I)
p(DjAH0I)

p(DjH0I)
(8{61)

is the Bayesian calculation he would like to do, it seems that honesty compels him to note a billion
other possibilities fH1 : : :Hng, and so he must do the calculation

p(AjDI) =
nX
i=0

p(AHijDI) = p(AjH0DI) p(H0jI) +
nX
i=1

p(AjHiDI) p(HijDI) : (8{62)

Now expand the last term by Bayes' theorem:

p(AjDHiI) = p(AjHiI)
p(DjAHiI)

p(DjHiI)
(8{63)

p(HijDI) = p(HijI)
p(DjHiI)

p(DjI) (8{64)

Presumably, knowing the condition of his thermometer does not in itself tell him anything about
the status of his pet theory, so

p(AjHiI) = p(AjI) ; 0 � i � n (8{65)

But if he knew the thermometer was broken, then the data would tell him nothing about his pet
theory (all this is supposed to be contained in the prior information I):

p(AjHiDI) = p(AjHiI) = p(AjI) ; 1 � i � n (8{66)

Then from (8{63), (8{65), (8{66) we have
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p(DjAHiI) = p(DjHiI) ; 1 � i � n (8{67)

That is, if he knows the thermometer is broken, and as a result the data can tell him nothing about
his pet theory, then his probability of getting those data cannot depend on whether his pet theory
is true. Then (8{62) reduces to

p(AjDI) = p(AjI)
p(DjI)

"
p(DjAH0I) p(H0I) +

nX
i=1

p(DjHiI) p(HijI)
#
: (8{68)

From this we see that if the di�erent ways of being broken do not in themselves tell him di�erent
things about the data:

p(DjHiI) = p(DjH1I) ; 1 � i � n (8{69)

then enumeration of the n di�erent ways of being broken is unnecessary; the calculation reduces to
�nding the likelihood

L � p(DjAH0I) p(H0jI) + p(DjH1I) [1� p(H0jI)] (8{70)

and only the total probability of being broken:

p(H0jI) =
nX
i=1

p(HijI) = 1� p(H0jI) (8{71)

is relevant. He does not need to enumerate a billion possibilities. But if p(DjHiI) can depend
on i, then the sum in (8{68) should be over those Hi that lead to di�erent p(DjHiI). That is,
information contained in the variations of p(DjHiI) would be relevant to his inference and so they
should be taken into account in a full calculation.

Contemplating this argument, common sense now tells us that this conclusion should have
been `obvious' from the start. Quite generally, enumeration of a large number of `�ne{grained'
propositions and assigning prior probabilities to all of them is necessary only if the breakdown into
those �ne details contains information relevant to the question being asked. If they do not, then
only the disjunction of all of the propositions is relevant to our problem, and we need only assign
a prior probability directly to it.

In practice, this means that in a real problem there will be some natural end to the process
of introducing �ner and �ner sub{propositions; not because it is wrong to introduce them, but
because it is unnecessary and irrelevant to the problem. The di�culty feared by Savage does not
exist in real problems; and this is one of the many reasons why our policy of assigning probabilities
on �nite sets, succeeds in the real world.

COMMENTS

There are still a number of interesting special circumstances, less important technically but calling
for short discussions.

Trying to conduct inference by inventing intuitive ad hoc devices instead of applying probability
theory has become a deeply ingrained habit among those with conventional training. Even after
seeing the Cox theorems and the applications of probability theory as logic, many fail to appreciate
what has been shown, and persist in trying to improve the results still more { without acquiring
any more information { by adding further ad hoc devices to the rules of probability theory. We
o�er here three observations intended to discourage such e�orts, by noting what information is and
is not contained in our equations.
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The Fallacy of Sample Re{use. Richard Cox's theorems show that, given certain data and
prior information D; I , any procedure which leads to a di�erent conclusion than that of Bayes'
theorem, will necessarily violate some very elementary desiderata of consistency and rationality.
This implies that a single application of Bayes' theorem with given D; I , will extract all the
information that is in D; I , relevant to the question being asked. Furthermore, we have already
stressed that, if we apply probability theory correctly there is no need to check whether the di�erent
pieces of information used are logically independent; any redundant information will cancel out and
will not be used twice.y

Yet the feeling persists that, somehow, using the same data again in some other procedure,
might extract still more information from D that Bayes' theorem has missed the �rst time; and
thus improve our ultimate inferences from D. Since there is no end to the conceivable arbitrary
devices that might be invented, we see no way to prove once and for all that no such attempt will
succeed, other than pointing to Cox's theorems. But for any particular device we can always �nd
a direct proof that it will not work; that is, the device cannot change our conclusions unless it also
violates one of our Chapter 2 desiderata. We consider one commonly encountered example.

Having applied Bayes' theorem with given D; I to �nd the posterior probability

p(�jD; I) = p(�jI)p(dj�I)
p(DjI) (8{72)

for some parameter �, suppose we decide to introduce some additional evidence E. Then another
application of Bayes' theorem updates that conclusion to

p(�jE;D; I) = p(�jD; I) p(Ej�;D; I)
p(EjD; I) (8{73)

so the necessary and su�cient condition that the new information will change our conclusions is
that, on some region of the parameter space of positive measure the likelihood ratio in (8{73) di�ers
from unity:

p(Ej�;D; I) 6= p(EjD; I) : (8{74)

But if the evidence E was something already implied by the data and prior information, then

p(Ej�;D; I) = p(EjD; I) = 1 (8{75)

and Bayes' theorem con�rms that re{using redundant information cannot change the results. This
is really only the principle of elementary logic: AA = A.

Yet there is a famous case in which it appeared at �rst glance that one actually did get impor-
tant improvement in this way; this leads us to recognize that the meaning of \logical independence"
is subtle and crucial. Suppose we take E = D; we simply use the same data set twice. But we act
as if the second D yere logically independent of the �rst D; that is, although they are the same
data, let us call them D� the second time we use them. Then we simply ignore the fact that D and
D� are actually one and the same data sets, and instead of (8{73) { (8{75) we take, in violation of
the rules of probability theory,

p(D�jD; I) = p(D�jI) ; p(D�j�;D; I) = p(D�j�; I) (8{76)

y Indeed, this is a property of any algorithm, in or out of probability theory, which can be derived from

a variational principle because in that case adding a new constraint cannot change the solution if the old

solution already satis�ed that constraint.
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Then the likelihood ratio in (8{73) is the same as in the �rst application of Bayes' theorem, (8{
72). We have squared the likelihood function, thus achieving a sharper posterior distribution with
apparently more accurate estimate of �!

It is evident that a fraud is being perpetrated here; by the same argument we could re{use the
same data any number of times, thus raising the likelihood function to an arbitrarily high power,
and seemingly getting arbitrarily accurate estimates of � { all from the same original data set D
which might consist of only one or two observations.

However, if we actually had two di�erent data sets D;D� which were logically independent in
the sense that knowing one would tell us nothing about the other { but which happened to be
numerically identical { then indeed (8{77) would be valid, and the correct likelihood function from
the two data sets would be the square of the likelihood from one of them. Therefore the fraudulent
procedure is, in e�ect, claiming to have twice as many observations as we really have. One can
�nd this procedure actually used and advocated in the literature, in the guise of a \data dependent
prior" (Akaike, 1980). This is also close to the topic of \meta{analysis" discussed above, where
ludicrous errors can result from failure to perceive the logical dependence of di�erent data sets
which are causally independent.

A Folk{Theorem. In ordinary algebra, suppose that we have a number of unknowns fx1 : : : xng
in some domain X to be determined, and are given the values of m functions of them:

y1 = f1(x1 : : : xn)

y2 = f2(x1 : : : xn)

: : :

ym = fm(x1 : : : xn)

If m = n and the jacobian @(y1 : : :yn)=@(x1 : : : xn) is not zero, then we can in principle solve for
the xi uniquely. But if m < n the system is underdetermined; one cannot �nd all the xi because
the information is insu�cient.

It appears that this well{known theorem of algebra has metamorphosed into a popular folk{
theorem of probability theory. Many authors state, as if it were an evident truth, that from m

observations one cannot estimate more than m parameters. Authors with the widest divergence of
viewpoints in other matters seem to be agreed on this. Therefore we almost hesitate to point out the
obvious; that nothing in probability theory places any such limitation on us. In probability theory,
as our data tend to zero, the e�ect is not that fewer and fewer parameters can be estimated; given
a single observation, nothing prevents us from estimating a million di�erent parameters. What
happens as our data tend to zero is that those estimates just relax back to the prior estimates, as
common sense tells us they must.

However, there may still be a grain of truth in this if we consider a slightly di�erent scenario;
instead of varying the amount of data for a �xed number of parameters, suppose we vary the
number of parameters for a �xed amount of data. Then does the accuracy of our estimate of one
parameter depend on how many other parameters we are estimating? We note verbally what one
�nds, leaving it as an exercise for the reader to write down the detailed equations. The answer
depends on how the sampling distributions change as we add new parameters; are the posterior
pdf 's for the parameters independent? If so, then our estimate of one parameter cannot depend on
how many others are present.

But if in adding new parameters they all get correlated in the posterior pdf , then the estimate
of one parameter � might be greatly degraded by the presence of others (uncertainty in the values
of the other parameters could then \leak over" and contribute to the uncertainty in �). In that
case, it may be that some function of the parameters can be estimated more accurately than can
any one of them. For example, if two parameters have a high negative correlation in the posterior
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pdf , then their sum can be estimated much more accurately than can their di�erence. We shall
see this below, in the theory of seasonal adjustment in economics. All these subtleties are lost on
conventional statistics, which does not recognize even the concept of correlations in a posterior pdf .

E�ect of Prior Information. It is obvious, from the general principle of non{use of redundant
information AA = A, that our data make a di�erence only when they tell us something that
our prior information does not. It should be (but apparently is not) equally obvious that prior
information makes a di�erence only when it tells us something that the data do not. Therefore,
whether our prior information is or is not important can depend on which data set we get. For
example, suppose we are estimating a general parameter �, and we know in advance that � < 6.
If the data lead to a negligible likelihood in the region � > 6, then that prior information has no
e�ect on our conclusions. Only if the data alone would have indicated appreciable likelihood in
� > 6 does the prior information matter.

But consider the opposite extreme: if the data placed practically all the likelihood in the region
� > 6, then the prior information would have overwhelming importance and the robot would be
led to an estimate very nearly �� = 6, determined almost entirely by the prior information. But in
that case the evidence of the data strongly contradicts the prior information, and you and I would
become skeptical about the correctness of the prior information, the model, or the data. This is
another case where astonishing new information may cause resurrection of alternative hypotheses
that you and I always have lurking somewhere in our minds.

But the robot, by design, has no creative imagination and always believes what we tell it; and
so if we fail to tell it about any alternative hypotheses, it will continue to give us the best estimates
based on unquestioning acceptance of what we do tell it { right up to the point where the data
and the prior information become logically contradictory { at which point, as noted at the end of
Chapter 2, the robot crashes.

But, in principle, a single data point could determine accurate values of a million parameters.
For example, if a function f(x1; x2; : : :) of a million variables takes on the value

p
2 only at a single

point, and we learn that f =
p
2 exactly, then we have determined a million variables exactly. Or,

if a single parameter is determined to an accuracy of twelve decimal digits, a simple mapping can
convert this into estimates of six parameters to two digits each. But this gets us into the subject
of `algorithmic complexity', which is not our present topic.

Clever Tricks and Gamesmanship. Two very di�erent attitudes toward the technical workings
of mathematics are found in the literature. Already in 1761, Leonhard Euler complained about
isolated results which \are not based on a systematic method" and therefore whose \inner grounds
seem to be hidden." Yet in the 20'th Century, writers as diverse in viewpoint as Feller and de Finetti
are agreed in considering computation of a result by direct application of the systematic rules of
probability theory as dull and unimaginative, and revel in the �nding of some isolated clever trick
by which one can see the answer to a problem without any calculation.

For example, Peter and Paul toss a coin alternately starting with Peter, and the one who
�rst tosses \heads" wins. What are the probabilities p; p0 for Peter or Paul to win? The direct,
systematic computation would sum (1=2)n over the odd and even integers:

p =
1X
n=0

1

22n+1
=

2

3
; p0 =

1X
n=1

1

22n
=

1

3

The clever trick notes instead that Paul will �nd himself in Peter's shoes if Peter fails to win on
the �rst toss: ergo, p0 = p=2, so p = 2=3; p0 = 1=3.

Feller's perception was so keen that in virtually every problem he was able to see a clever trick;
and then gave only the clever trick. So his readers get the impression that:
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(1) Probability theory has no systematic methods; it is a collection of isolated, unrelated
clever tricks, each of which works on one problem but not on the next one.

(2) Feller was possessed of superhuman cleverness.

(3) Only a person with such cleverness can hope to �nd new useful results in probability
theory.

Indeed, clever tricks do have an aesthetic quality that we all appreciate at once. But we doubt
whether Feller, or anyone else, was able to see those tricks on �rst looking at the problem.

We solve a problem for the �rst time by that (perhaps dull to some) direct calculation applying
our systematic rules. After seeing the solution, we may contemplate it and see a clever trick that
would have led us to the answer much more quickly. Then, of course, we have the opportunity
for gamesmanship by showing others only the clever trick, scorning to mention the base means by
which we �rst found the answer. But while this may give a boost to our ego, it does not help
anyone else.

Therefore we shall continue expounding the systematic calculation methods, because they
are the only ones which are guaranteed to �nd the solution. Also, we try to emphasize general

mathematical techniques which will work not only on our present problem, but on hundreds of
others. We do this even if the current problem is so simple that it does not require those general
techniques. Thus we develop the very powerful algorithms involving group invariance, partition
functions, entropy, and Bayes' theorem, that do not appear at all in Feller's work. For us, as for
Euler, these are the solid meat of the subject, which make it unnecessary to discover a di�erent
new clever trick for each new problem.

We learned this policy from the example of George P�olya. For a Century, mathematicians
had been, seemingly, doing their best to conceal the fact that they were �nding their theorems
�rst by the base methods of plausible conjecture, and only afterward �nding the \clever trick"
of an e�ortless, rigorous proof. P�olya gave away the secret in his \Mathematics and Plausible
Reasoning," which was a major stimulus for the present work.

Clever tricks are always pleasant diversions, and useful in a temporary way, when we want
only to convince someone as quickly as possible. Also, they can be valuable in understanding a
result; having found a solution by tedious calculation, if we can then see a simple way of looking
at it that would have led to the same result in a few lines, this is almost sure to give us a greater
con�dence in the correctness of the result, and an intuitive understanding of how to generalize it.
We point this out many times in the present work.

But the road to success in probability theory is through mastery of the general, systematic
methods of permanent value. For a teacher, therefore, maturity is largely a matter of overcoming
the urge to gamesmanship.


