
cc13v, 6/7/96

CHAPTER 13

DECISION THEORY { HISTORICAL BACKGROUND

\Your act was unwise," I exclaimed \as you see
by the outcome." He solemnly eyed me.

\When choosing the course of my action," said he,
\I had not the outcome to guide me."

| Ambrose Bierce

In several previous discussions we inserted parenthetic remarks to the e�ect that \there is still an
essential point missing here, which will be supplied when we take up decision theory." However, in

postponing the topic until now we have not deprived the reader of a needed technical tool, because

the solution of the decision problem was, from our viewpoint, so immediate and intuitive that we
did not need to invoke any underlying formal theory.

Inference vs. Decision

This situation arose as soon as we started applying probability theory to our �rst problem. When
we illustrated the use of Bayes' theorem by sequential testing in Chapter 4, we noted that there is

nothing in probability theory per se which could tell us where to put the critical levels at which

the robot changes its decision: whether to accept the batch, reject it, or make another test. The
location of these critical levels obviously depends in some way on value judgments as well as on

probabilities; what are the consequences of making wrong decisions, and what are the costs of
making further tests?

The same situation occurred in Chapter 6 when the robot was faced with the job of estimating a

parameter. Probability theory determined only the robot's state of knowledge about the parameter;
it did not tell us what estimate it should in fact make. We noted at that time that taking the mean

value over the posterior pdf was the same as making that decision which minimizes the expected
square of the error; but we noted also that in some cases we should really prefer the median.

Qualitatively and intuitively, these considerations are clear enough; but before we can claim to
have a really complete design for our robot, we must clean up the logic of this, and show that our
procedures were not just intuitive ad hockeries, but were optimal by some clearly de�ned criterion

of optimality. Wald's decision theory aims to accomplish this.

A common feature of all the problems considered thus far was: probability theory alone can

solve only the inference problem; i.e., it can give us only a probability distribution which represents
the robot's �nal state of knowledge with all the available prior information and data taken into

account; but in practice its job does not end at that point. An essential thing which is still missing

in our design of this robot is the rule by which it converts its �nal probability assignment into a

de�nite course of action. But for us, formal decision theory will only legitimize { not change { what
our intuition has already told us to do.

Decision theory has for us a di�erent kind of importance, in the light that it sheds on the

centuries{old controversies about the foundations of probability theory. The procedures of decision
theory can be derived equally well from either of two diametrically opposed views about what

probability theory is, and it therefore forms a kind of bridge between them and suggests that
decision theory might help to resolve the controversy. Therefore, we dwell here on the historical
background and relation of the two approaches to the decision problem.
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Daniel Bernoulli's Suggestion

As one might expect from the way this situation appeared in the most elementary applications

of probability theory, this problem is by no means new. It was clearly recognized, and a de�nite
solution o�ered for a certain class of problems, by Daniel Bernoulli (1738). In a crude form, the

same principle had been seen even earlier, at the time when probability theory was concerned
almost exclusively with problems of gambling. Although today it seems very hard to understand,

the historical record shows clearly and repeatedly that the notion of \expectation of pro�t" was
very intuitive to the �rst workers in probability theory; even more intuitive than that of probability.

Consider each possibility, i = 1; 2; :::; n, assign probabilities pi to them, and also assign numbers

Mi which represent the \pro�t" we would obtain if the i'th possibility should in fact turn out to
be true. Then the expectation of pro�t is, in either of our standard notations,

E(M) = hMi =

nX
i=1

piMi (13{1)

The prosperous merchants in 17'th Century Amsterdam bought and sold expectations as if they
were tangible goods. It seemed obvious to many that a person acting in pure self{interest should

always behave in such a way as to maximize his expected pro�t. This, however, led to some
paradoxes (particularly that of the famous St. Petersburg problem) which led Bernoulli to recognize

that simple expectation of pro�t is not always a sensible criterion of action.

For example, suppose that your information leads you to assign probability 0.51 to heads in a
certain slightly biased coin. Now you are given the choice of two actions: (1) to bet every cent you

have at even money, on heads for the next toss of this coin; (2) not to bet at all. According to the
criterion of expectation of pro�t, you should always choose to gamble when faced with this choice.

Your expectation of pro�t, if you do not gamble, is zero; but if you do gamble, it is

hMi = 0:51M0 + 0:49 (�M0) = 0:02M0 > 0 (13{2)

where M0 is the amount you have now. Nevertheless it seemed obvious to Bernoulli, as it doubtless
does also to the reader, that nobody in his right mind would really choose the �rst alternative.

This means that our common sense, in some cases, rejects the criterion of maximizing expected
pro�t.

Suppose that you are o�ered the following opportunity. You can bet any amount you want on

the basis that, with probability (1�10�6), you will lose your money; but with probability 10�6, you
will win 1,000,001 times the amount you had wagered. Again, the criterion of maximizing expected

pro�t says that you should bet all the money you have. Common sense rejects this solution even
more forcefully.

Daniel Bernoulli proposed to resolve these paradoxes by recognition that the true value to a

person, of receiving a certain amount of money, is not measured simply by the amount received; it
depends also upon how much he has already. In other words, Bernoulli said that we should recognize
that the mathematical expectation of pro�t is not the same thing as its \moral expectation." A
modern economist is expressing the same idea when he speaks of the \diminishing marginal utility

of money."

In the St. Petersburg game we toss an honest coin until it comes up heads for the �rst time.
The game is then terminated. If heads occurs for the �rst time at the n'th throw, the player receives

2n dollars. The question is: what is a \fair" entrance fee for him to pay, for the privilege of playing
this game? If we use the criterion that a fair game is one where the entrance fee is equal to the
expectation of pro�t, you see what happens. This expectation is in�nite:
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1X
k=1

(2�k)(2k) =

1X
k=1

1 =1: (13{3)

Nevertheless it is clear again that no sane person would be willing to risk more than a very small

amount on this game. We quote Laplace (1819) at this point:

\Indeed, it is apparent that one franc has much greater value for him who possesses only 100 than

for a millionaire. We ought then to distinguish the absolute value of the hoped{for bene�t from its

relative value. The latter is determined by the motives which make it desirable, whereas the �rst is

independent of them. The general principle for assigning this relative value cannot be given, but here

is one proposed by Daniel Bernoulli which will serve in many cases: The relative value of an in�nitely

small sum is equal to its absolute value divided by the total fortune of the person interested."

In other words, Bernoulli proposed that the \moral value," or what the modern economist would

call the \utility" of an amount M of money should be taken proportional to logM . Laplace, in

discussing the St. Petersburg problem and this criterion, reports the following result without giving
the calculation: a person whose total fortune is 200 francs ought not reasonably to stake more than

9 francs on the play of this game. Let us, 180 years later, check Laplace's calculation.

For a person whose initial \fortune" is m francs, the fair fee f(m) is determined by equating

his present utility with his expected utility if he pays the fee and plays the game; i.e., f(m) is the
root of

logm =

1X
n=1

1

2n
log(m� f + 2n): (13{4)

Computer evaluation gives f(200) = 8:7204; Laplace, without a computer, did his calculation very

well. Likewise, f(103) = 10:95, f(104) = 14:24, f(106) = 20:87. Even a millionaire should not risk
more than 21 francs on this dubious game.

It seems to us that this kind of numerical result is entirely reasonable. However the logarithmic
assignment of utility is not to be taken literally either in the case of extremely small fortunes (as

Laplace points out), or in the case of extremely large ones, as the following example of Savage

(1954) shows:

Suppose your present fortune is $1,000,000; then if your utility for money is proportional to

the logarithm of the amount, you should be as willing as not to accept a wager in which, with
probability one{half, you'll be left with only $1,000, and with probability one{half, you will be left

with $1,000,000,000. Most of us would consider such a bet to be distinctly disadvantageous to a
person with that initial fortune. This shows that our intuitive \utility" for money must increase

even less rapidly than the logarithm for extremely large values. Cherno� and Moses (1959) claim
that it is bounded; this appears to us plausible theoretically but not really demonstrated in the real
world (why do billionaires continue to work harder than anybody else to earn still more money?).

The gist of Daniel Bernoulli's suggestion was therefore that, in the gambler's problem of

decision making under uncertainty, one should act so as to maximize the expected value, not
necessarily of the pro�t itself, but of some function of the pro�t which he called the \moral value".
In more modern terminology the optimist will call this \maximizing expected utility," while the

pessimist will speak instead of \minimizing expected loss", the loss function being taken as the
negative of the utility function.
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The Rationale of Insurance

Let us illustrate some of the above remarks brie
y with the example of insurance, which is in

some ways like the St. Petersburg game. The following scenario is oversimpli�ed in obvious ways;
nevertheless it makes some valid and important points. Insurance premiums are always set high

enough to guarantee the insurance company a positive expectation of pro�t over all the contingencies

covered in the contract, and every dollar the company makes is a dollar lost by a customer. Then
why should anyone ever want to buy insurance?

The point is that the individual customer has a utility function for money that may be strongly
curved over ranges of $1000; but the insurance company is so much larger that its utility for money

is accurately linear over ranges of millions of dollars. Thus, let P be the premium for some
proposed insurance contract, let i = 1; 2; : : :n enumerate the contingencies covered, the i'th having

probability wi and cost to the insurance company, if it happens, of Li. Let the prospective customer
have Daniel Bernoulli's logarithmic utility for money and an initial amount M . Of course, by M

we should understand his so{called \net worth", not merely the amount of cash he has on hand.

Then the expected utility for the insurance company and for the customer, if he does or does not
buy the insurance, will be:

BUY DON 0T BUY

Company P �
P

wiLi 0

Customer log(M � P )
P

wi log(M � Li)

So if hLi < P , the company wants to sell the insurance, and if hlog(M � L)i < log(M � P ) the

customer wants to buy it. If the premium is in the range

hLi < P < [M � exphlog(M � L)i] (13{5)

it will be advantageous for both to do business.

We leave it as an exercise for the reader to show from (13{5) that a poor man should buy

insurance, but a rich man should not unless his assessment of expected loss hLi is much greater
than the insurance company's. Indeed, if your present fortune is much greater than any likely loss,
then your utility for money is nearly as linear as the insurance company's, in the region where it
matters; and you may as well be your own insurance company.

Further insight into the rich man's psychology is had by noting that if M >> hLi we may
expand in powers of M�1;

M � exphlog(M � L)i = hLi+
var(L)

2M
+ : : : (13{6)

where var(L) = hL2i� hLi2. Thus a moderately rich man might be willing to buy insurance even if

the premium is slightly larger than his expected loss, because this removes the uncertainty var(L)
about the actual loss which he would otherwise have to live with; we have an aversion not only to

risk, but to uncertainty about it.

Further insight into the poor man's psychology is had by writing the RHS of (13{5) as

M � exphlog(M � L)i = M ��i exp[wi log(M � Li)] (13{7)

Let the Li be enumerated so that L1 � L2 � L3 : : :. Then this expression does not make sense

unless M > L1; but presumably it is not possible to have M < L1, for one cannot lose more
than he has. But if M approaches L1, the last term becomes singular [exp(�1)] and drops out.
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Equation (13{5) then reduces to hLi < P < M ; it appears that this unfortunate person should
always buy insurance if he can, even if this leaves him as poor as if the worst possible contingency

had happened to him!

Of course, this only illustrates that the logarithmic utility assignment is unrealistic for very
small amounts. In fact, the utility is clearly bounded in that region also; he who possesses only

one penny does not consider it a calamity to lose it. We may correct this, as many have done,

by replacing logM by log(M + b), where b is an amount so small that we consider it practically
worthless. This modi�es our conclusion from (13{7) in a way that we leave for the reader to work

out, and which may suggest a good choice for b.

Entropy and Utility

The logarithmic assignment of utility is reasonable for many purposes, as long as it is not pushed
to extremes. It is also, incidentally, closely connected with the notion of entropy, as shown by

Bellman and Kalaba (1956). A gambler, who receives partially reliable advance tips on a game,
acts (i.e., decides on which side and how much to bet) so as to maximize the expected logarithm of

his fortune. They show that (1) one can never go broke following this strategy, in contrast to the
strategy of maximizing expected pro�t, where it is easily seen that with probability one this will

happen eventually (the classical \gambler's ruin" situation), and (2) the amount one can reasonably

expect to win on any one game is clearly proportional to the amount M0 he has to begin with, so
after n games, one could hope to have an amount M = M0e

�n. Evidently, to use the logarithmic

utility function means that one acts so as to maximize the expectation of �.

Exercise 13.1. Show that the maximum attainable h�i is just (H0�H), where H is the entropy
which describes the gambler's uncertainty as to the truth of his tips, and H0 is the maximum

possible entropy, if the tips were completely uninformative.

A similar result is derived below. This suggests that, with more development of the theory, entropy

might have an important place in guiding the strategy of a businessman or stock market investor.

There is a more subtle use of these considerations; the possibility not only of maximizing

our own utility, but of manipulating the utility considerations of others so as to induce them to
behave as we wish. Competent administrators know, instinctively but qualitatively, how to o�er

rewards and punishments so as to keep their organizations running smoothly and on course. A
much oversimpli�ed but quantitative example of this follows.

The Honest Weatherman

The weatherman's prior information and data yield a probability p = P (RainjData; I) that it will

rain tomorrow. Then what probability q will he announce publicly, in his evening TV forecast?
This depends on his perceived utility function. We suspect that weather forecasters systematically

overstate the probability of bad weather, i.e., announce a value q > p, in the belief that they will

incur more criticism from failing to predict a storm that arrives than from predicting one that fails
to arrive.y

Nevertheless, we would prefer to be told the value p actually indicated by all the data at

hand; indeed, if we were sure that we were being told this, we could not reasonably criticize the
weatherman for his failures. Is it possible to give the weatherman a utility environment that will
induce him always to tell the truth?

y Evidence for this is seen in the fact that, in St. Louis, we experience a predicted nonstorm almost every

other week; but a nonpredicted storm is so rare that it is a major news item.
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Suppose we write the weatherman's employment contract to stipulate that he will never be
�red for making too many wrong predictions; but that each day, when he announces a probability

q of rain, his pay for that day will be B log(2q) if it actually rains the next day, and B log 2(1� q)
if it does not, where B is a base rate that does not matter for our present considerations, as long

as it is high enough to make him want the job. Then the weatherman's expected pay for today, if
he announces probability q, is

B[p log 2q + (1� p) log 2(1� q)] = B[log 2 + p log q + (1� p) log(1� q)] : (13{8)

Taking the �rst and second derivatives, we �nd that this is a maximum when q = p.

Now any continuous utility function appears linear if we examine only a small segment of it.

Thus, if the weatherman considers a single days' pay small enough so that his utility for it is linear
in the amount, it will always be to his advantage to tell the truth. There exist combinations of

rewards and utility functions for which, quite literally, honesty is the best policy.

More generally, let there be n possible events (A1 : : :An) for which the available prior infor-
mation and data indicate the probabilities (p1 : : : pn). But a predictor chooses to announce instead

the probabilities (q1 : : : qn). Let him be paid B log(nqi) if the event Ai subsequently occurs; he is

rewarded for placing a high probability on the true event. Then his expectation of pay is

B[log n � I(q; p)] (13{9)

where I(q; p)�
P

pi log qi is essentially (to within an additive constant) the relative entropy of the
distributions [today commonly called the Kullback{Leibler Information, although its fundamental

properties were proved and exploited already by Gibbs (1902, Chap. 11)]. Then it will be to his
advantage to announce always qi = pi, and his maximum expectation of pay is

B[log n �H(p1 : : : pn)] (13{10)

where H(pi) is the entropy that measures his uncertainty about the Ai. It is not only to his

advantage to tell the truth; it is to his advantage to acquire the maximum possible amount of

information so as to decrease that entropy.

So, with an appropriate system of rewards, not only is honesty the best policy; industry is

also encouraged. We see from this that a person who acts in his own self{interest is not necessarily

acting counter to the interests of the rest of Society. Socio{economic activity is not a zero{sum
game; it is possible, at least theoretically, to organize things so that the individual's self{interest

runs parallel to that of Society as a whole (but we do not know how well this utopian situation is
approximated by present Societies).

Reactions to Daniel Bernoulli and Laplace

The mathematically elementary { yet evidently important { nature of these results, might make

one think that such things must have been not only perceived by many, but put to good use
immediately, as soon as Daniel Bernoulli and Laplace had started this train of thought. Indeed, it

seems in retrospect surprising that the notion of entropy was not discovered in this way, 100 years
before Gibbs.

But the actual course of history has been very di�erent; for most of the 20'th Century the

\frequentist" school of thought either ignored the above line of reasoning or condemned it as
metaphysical nonsense. In one of the best known books on probability theory (Feller, 1950; p. 199),
Daniel Bernoulli's resolution of the St. Petersburg paradox is rejected without even being described,

except to assure the reader that he \tried in vain to solve it by the concept of moral expectation."
Warren M. Hirsch, in a review of the book, ampli�ed this as follows:



1307 Chap. 13: DECISION THEORY { HISTORICAL BACKGROUND 1307

\Various mystifying `explanations' of this paradox had been o�ered in the past, involving, for example,

the concept of moral expectation. These explanations are hardly understandable to the modern student

of probability. Feller gives a straightforward mathematical argument which leads to the determination

of �nite entrance fee with which the St. Petersburg game has all the properties of a fair game."

We have just seen how `vain' and `hardly understandable' Daniel Bernoulli's e�orts were. Reading

Feller, one �nds that he `resolved' the paradox merely by de�ning and analyzing a di�erent game.
He undertakes to explain the rationale of insurance in the same way; but since he rejects Daniel

Bernoulli's concept of a curved utility function, he concludes that insurance is always necessarily
`unfair' to the insured. These explanations are hardly understandable to the modern economist (or

to us).

In the 1930's and 1940's a form of decision rules, as an adjunct to hypothesis testing, was

expounded by J. Neyman and E. S. Pearson. It enjoyed a period of popularity with electrical

engineers (Middleton, 1960) and economists (Simon, 1977) but it is now obsolete because it lacks
two fundamental features now recognized as essential to the problem. In Chapter 14 we give a

simple example of the Neyman{Pearson procedure, which shows how it is related to others.

Then in 1950 Abraham Wald gave a formulation that operates at a more fundamental level

which makes it appear likely to have a permanent validity, as far as it goes, and gives a rather fun-
damental justi�cation to Daniel Bernoulli's intuitive ideas. But these e�orts were not appreciated

in all quarters. Maurice Kendall (1963) wrote:

\There has been a strong movement in the U.S.A. to regard inference as a branch of decision theory.

Fisher would have maintained (and in my opinion rightly) that inference in science is not a matter of

decision, and that, in any case, criteria for choice in decision based on pay{o�s of one kind or another

are not available. This, broadly speaking, is the English as against the American point of view. � � � I

propound the thesis that some such di�erence of attitude is inevitable between countries where what a

man does is more important than what he thinks, and those where what he thinks is more important

than what he does."

But we need not rely on second{hand sources for Fisher's attitude toward decision theory; as noted

in Chapter 16, he was never at a loss to express himself on anything. In discussing signi�cance
tests, he writes (Fisher, 1956; p. 77):

\� � � recently � � � a considerable body of doctrine has attempted to explain, or rather to reinterpret,

these tests on the basis of quite a di�erent acceptance procedure. The di�erences between these

two situations seem to the author many and wide, and I do not think it would have been possible to

overlook them had the authors of this reinterpretation had any real familiarity with work in the natural

sciences, or consciousness of those features of an observational record which permit of an improved

scienti�c understanding."

Then he identi�es Neyman and Wald as the objects of his criticism.

Apparently, Kendall, appealing to motives usually disavowed by scholars, regarded decision
theory as a defect of the American, as opposed to the British character (although neither Neyman
nor Wald was born or educated in America { they 
ed here from Europe). Fisher regarded it as an

aberration of minds not versed in natural science (although the procedures were due originally to
Daniel Bernoulli and Laplace, whose stature as natural scientists will easily bear comparison with
Fisher's).

We agree with Kendall that the approach of Wald does indeed give the impression that inference
is only a special case of decision; and we deplore this as much as he did. But we observe that in
the original Bernoulli{Laplace formulation (and in ours), the clear distinction between these two
functions is maintained, as it should be. But while we perceive this necessary distinction between

inference and decision, we perceive also that inference not followed by decision is largely idle, and

no natural scientist worthy of the name would undertake the labor of conducting inference unless
it served some purpose.
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These quotations give an idea of the obstacles which the perfectly natural, and immensely
useful, ideas of Daniel Bernoulli and Laplace had to overcome; 200 years later, anyone who suggested

such things was still coming under attack from the entrenched `orthodox' statistical Establishment {
and in a way that re
ected no credit on the attackers. Let us now examine Wald's theory.

Wald's Decision Theory

Wald's formulation, in its initial stages, had no apparent connection with probability theory. We

begin by imagining (i.e., enumerating) a set of possible \states of Nature," f�1; �2; : : : ; �Ng whose
number is always, in practice, �nite although it might be a useful limiting approximation to think

of them as in�nite or even as forming a continuum. In the quality{control example of Chapter 4,
the \state of Nature" was the unknown number of defectives in the batch.

There are certain illusions that tend to grow and propagate here. Let us dispel one by noting

that, in enumerating the di�erent states of Nature, we are not describing any real (veri�able)
property of Nature { for, one and only one of them is in fact true. The enumeration is only a

means of describing a state of knowledge about the range of possibilities. Two persons, or robots,
with di�erent prior information may enumerate the �j di�erently without either being in error or

inconsistent. One can only strive to do the best he can with the information he has, and we expect

that the one with better information will naturally { and deservedly { make better decisions. This
is not a paradox, but a platitude.

The next step in our theory is to make a similar enumeration of the decisions fD1; D2; : : : ; Dkg

that might be made. In the quality{control example, there were three possible decisions at each

stage:

D1 � \Accept the batch"

D2 � \Reject the batch"

D3 � \Make another test"

In the particle counter problem of Mr. B in Chapter 6, where we were to estimate the number n1 of

particles passing through the counter in the �rst second, there were an in�nite number of possible
decisions:

Di � \n1 is estimated as equal to 0, 1, 2, : : :"

If we are to estimate the source strength, there are so many possible estimates that we thought of
them as forming a continuum of possible decisions, even though in actual fact we can write down

only a �nite number of decimal digits.

This theory is clearly of no use unless by \making a decision" we mean, \deciding to act as if
the decision were correct". It is idle for the robot to \decide" that n1 = 150 is the best estimate

unless we are then prepared to act on the assumption that n1 = 150. Thus the enumeration of the
Di that we give the robot is a means of describing our knowledge as to what kinds of actions are

feasible; it is idle and computationally wasteful to consider any decision which we know in advance
corresponds to an impossible course of action.

There is another reason why a particular decision might be eliminated; even though D1 is
easy to carry out, we might know in advance that it would lead to intolerable consequences. An
automobile driver can make a sharp turn at any time; but his common sense usually tells him not

to. Here we see two more points: (1) there is a continuous gradation { the consequences of an
action might be serious without being absolutely intolerable, and (2) the consequences of an action

(= decision) will in general depend on what is the true state of Nature { a sudden sharp turn does
not always lead to disaster, and it may actually avert disaster.

This suggests a third concept we need { the loss function L(Di; �j), which is a set of numbers
representing our judgment as to the \loss" incurred by making decision Di if �j should turn out to
be the true state of Nature. If the Di and �j are both discrete, this is a loss matrix Lij .
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Quite a bit can be done with just the �j ; Di; Lij and there is a rather extensive literature
dealing with criteria for making decisions with no more than this. In the early days of this theory

the results were summarized in a very readable and entertaining form by Luce and Rai�a (1957),
and in the aforementioned elementary textbook of Cherno� and Moses (1959), which we recommend

as still very much worth reading today. This culminated in the more advanced work of Rai�a &
Schlaifer (1961), which is still a standard reference work because of its great amount of useful

mathematical material (and, perhaps, its absence of rambling philosophy).

For a modern exposition with both the philosophy and the mathematics in more detail than
we give here, see James Berger (1985). This is written from a Bayesian viewpoint almost identical

to ours and it takes up many technical circumstances important for inference but which are not, in

our view, really part of decision theory.

The minimax criterion is: for each Di �nd the maximum possible loss Mi = maxj(Lij); then
choose that Di for which Mi is a minimum. This would be a reasonable strategy if we regard

Nature as an intelligent adversary who foresees our decision and deliberately chooses the state of
Nature so as to cause us the maximum frustration. In the theory of some games, this is not a

completely unrealistic way of describing the situation, and consequently minimax strategies are of
fundamental importance in game theory (von Neumann and Morgenstern, 1953).

But in the decision problems of the scientist, engineer, or economist we have no intelligent

adversary, and the minimax criterion is that of the long{faced pessimist who concentrates all his
attention on the worst possible thing that could happen, and thereby misses out on the favorable

opportunities.

Equally unreasonable from our standpoint is the starry{eyed optimist who believes that Nature

is deliberately trying to help him, and so uses this \minimin" criterion: for each Di �nd the
minimum possible loss mi = minj(Lij) and choose the Di that makes mi a minimum.

Evidently, a reasonable decision criterion for the scientist, engineer, or economist is in some

sense intermediate between minimax and minimin, expressing our belief that Nature is neutral
toward our goals. Many other criteria have been suggested, with such names as maximin utility

(Wald), �{optimism{pessimism (Hurwicz), minimax regret (Savage), etc. The usual procedure, as
described in detail by Luce and Rai�a, has been to analyze any proposed criterion to see whether

it satis�es about a dozen qualitative common{sense conditions such as

(1) Transitivity: If D1 is preferred to D2, and D2 preferred to D3, then D1 should be

preferred to D3

(2) Strong Domination: If for all states of Nature �j we have Lij < Lkj , then Di should

always be preferred to Dk.

This kind of analysis, although straightforward, can become tedious. We do not follow it any

further, because the �nal result is that there is only one class of decision criteria which passes all
the tests, and this class is obtained more easily by a di�erent line of reasoning.

A full decision theory, of course, cannot concern itself merely with the �j ; Di; Lij. We also,

in typical problems, have additional evidence E, which we recognize as relevant to the decision
problem, and we have to learn how to incorporate E into the theory. In the quality{control
example of Chapter 4, E consisted of the results of the previous tests.

At this point the decision theory of Wald takes a long, di�cult, and as we now realize, un-
necessary mathematical detour. One de�nes a \strategy" S, which is a set of rules of the form,

\If I receive new evidence Ei, then I will make decision Dk." In principle one �rst enumerates

all conceivable strategies (whose number is, however, astronomical even in quite simple problems),
and then eliminates the ones considered undesirable by the following criterion. Denote by
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p(Dkj�jS) =
X
i

p(DkjEi�jS) p(Eij�j) (13{11)

the sampling probability that, if �j is the true state of Nature, strategy S would lead us to make
decision Dk, and de�ne the risk presented by �j with strategy S as the expected loss over this

distribution:

Rj(S) = hLij =
X
k

p(Dkj�jS)Lkj: (13{12)

Then a strategy S is called admissible if no other S0 exists for which

Rj(S
0) � Rj(S); all j: (13{13)

If an S0 exists for which the strict inequality holds for at least one �j , then S is termed inadmissible.
The notions of risk and admissibility are evidently sampling theory criteria, not Bayesian, since

they invoke only the sampling distribution. Wald, thinking in sampling theory terms, considered

it obvious that the optimal strategy should be sought only within the class of admissible ones.

A principal object of Wald's theory is then to characterize the class of admissible strategies in

mathematical terms, so that any such strategy can be found by carrying out a de�nite procedure.
The fundamental theorem bearing on this is Wald's Complete Class Theorem which establishes a

result shocking to sampling theorists (including Wald himself). Berger (1985, Chap. 8) discusses
this in Wald's terminology. The term \complete class" is de�ned in a rather awkward way (Berger,

loc. cit., pp. 521{522). What Wald really wanted was just the set of all admissible rules, which
Berger calls a \minimal complete class". From Wald's viewpoint it is a highly nontrivial mathe-

matical problem to prove that such a class exists, and to �nd an algorithm by which any rule in
the class can be constructed.

However, from our viewpoint these are unnecessary complications, signifying only an inappro-

priate de�nition of the term \admissible". We shall return to this issue in Chapter 17 and come to a
di�erent conclusion; an `inadmissible' decision may be overwhelmingly preferable to an `admissible'

one, because the criterion of admissibility ignores prior information { even information so cogent
that, for example, in major medical, public health, or airline safety decisions, to ignore it would

put lives in jeopardy and support a charge of criminal negligence.

This illustrates the folly of inventing noble{sounding names like `admissible' and `unbiased'

for principles that are far from noble; and not even fully rational. In the future we should pro�t
from this lesson and take care that we describe technical conditions by names that are ethically

and morally neutral, and so do not have false connotations which could mislead others for decades,

as these have.

Since in real applications we do not want to { and could not { restrict ourselves to admissible
rules anyway, we shall not follow this quite involved argument. We give a di�erent line of rea-
soning which leads to the rules which are appropriate in the real world, while giving us a better

understanding of the reason for them.

What makes a decision process di�cult? Well, if we knew which state of Nature was the correct

one, there would be no problem at all; if �3 is the true state of Nature, then the best decision Di

is the one which renders Li3 a minimum. In other words, once the loss function has been speci�ed,
our uncertainty as to the best decision arises solely from our uncertainty as to the state of Nature.

Whether the decision minimizing Li3 is or is not best depends on this: How strongly do we believe
that �3 is the true state of Nature? How plausible is �3?
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To our robot it seems a trivial step { really only a rephrasing of the question { to ask next,
\Conditional on all the available evidence, what is the probability P3 that �3 is the true state of

Nature?" Not so to the sampling theorist, who regards the word \probability" as synonomous with
\long{run relative frequency in some random experiment". On this de�nition it is meaningless to

speak of the probability of �3, because the state of nature is not a \random variable". Thus, if we
adhere consistently to the sampling theory view of probability, we shall conclude that probability

theory cannot be applied to the decision problem, at least not in this direct way.

It was just this kind of reasoning which led statisticians, in the early part of this century,

to relegate problems of parameter estimation and hypothesis testing to a new �eld, Statistical
Inference, which was regarded as distinct from probability theory, and based on entirely di�erent

principles. But let us examine a typical problem of this type from the sampling theory viewpoint,
and see how introducing the notion of a loss function changes this conclusion.

Parameter Estimation for Minimum Loss

There is some unknown parameter �, and we make n repeated observations of a quantity, ob-

taining an observed \sample" x � fx1 : : :xng. We interpret the symbol x, without subscripts, as
standing for a vector in an n{dimensional \sample space" and suppose that the possible results

xi of individual observations are real numbers which we think of as continuously variable in some

domain (a � xi � b). From observation of the sample x, what can we say about the unknown
parameter �? We have already studied such problems from the Bayesian \Probability Theory as

Logic" viewpoint; now we consider them from the sampling theory viewpoint.

To state the problem more drastically, suppose that we are compelled to choose one speci�c

numerical value as our \best" estimate of �, on the basis of the observed sample x, and any other
prior information we might have, and then to act as if this estimate were true. This is the decision

situation which we all face daily, both in our professional capacity and in everyday life. The driver
approaching a blind intersection cannot know with certainty whether he will have enough time to

cross it safely; but still he is compelled to make a decision based on what he can see, and act on it.

Now it is clear that in estimating �, the observed sample x is of no use to us unless we can

see some kind of logical (not necessarily causal) connection between � and x. In other words, if we
knew �, but not x, then the probabilities which we would assign to various observable samples must

depend in some way on the value of �. If we consider the di�erent observations as independent, as
was almost always done in the sampling theory of parameter estimation, then the sampling density
function factors:

f(xj�) = f(x1j�) : : : f(xnj�): (13{14)

However, this very restrictive assumption is not necessary (and in fact does not lead to any formal
simpli�cation) in discussing the general principles of parameter estimation from the decision theory

standpoint.

Let � = �(x1 : : : xn) be an \estimator", i.e., any function of the data values, proposed as an
estimate of �. Also, let L(�; �) be the \loss" incurred by guessing the value � when � is in fact
the true value. Then for any given estimator the risk is the \pre{data" expected loss; i.e. the loss

for a person who already knows the true value of � but does not know what data will be observed:

R� �

Z
L(�; �) f(xj�) dx: (13{15)

By
R
( )dx we mean the n{fold integrationZ

� � �

Z
( ) dx1 : : : dxn: (13{16)
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We may interpret this notation as including both the continuous and discrete cases; in the latter
f(xj�) is a sum of delta{functions.

On the view of one who uses the frequency de�nition of probability, the above phase, \for a

person who already knows the true value of �" is misleading and unwanted. The notion of the
probability of sample x for a person with a certain state of knowledge is entirely foreign to him;

he regards f(xj�) not as a description of a mere state of knowledge about the sample, but as an

objective statement of fact, giving the relative frequencies with which di�erent samples would be
observed \in the long run".

Unfortunately, to maintain this view strictly and consistently would reduce the legitimate

applications of probability theory almost to zero; for one can (and most of us do) work in this
�eld for a lifetime without ever encountering a real problem in which one actually has knowledge

of the \true" limiting frequencies for an in�nite number of trials; how could one ever acquire such
knowledge? Indeed, quite apart from probability theory, no scientist ever has sure knowledge of

what is \really true"; the only thing we can ever know with certainty is: what is our state of

knowledge? To describe this is all that any science could ever have claimed to do.

Then how could one ever assign a probability which he knew was equal to a limiting frequency
in the real world? It seems to us that the belief that probabilities are realities existing in Nature is

pure Mind Projection Fallacy; and true \Scienti�c Objectivity" demands that we escape from this
delusion and recognize that in conducting inference our equations are not describing reality, only

our information about reality.

In any event, the \frequentist" believes that R� is not merely the \expectation of loss" in the

present situation, but is also, with probability 1, the limit of the average of actual losses which
would be incurred by using the estimator � an inde�nitely large number of times; i.e., by drawing

a sample of n observations repeatedly with a �xed value of �. Furthermore, the idea of �nding the
estimator which is \best for the present speci�c sample" is quite foreign to his outlook; because he

regards the notion of probability as referring to a collection of cases rather than a single case, he

is forced to speak instead of �nding that estimator \which will prove best, on the average, in the
long run".

On the frequentist view, therefore, it would appear that the best estimator will be the one

that minimizes R�. Is this a variational problem? A small change ��(x) in the estimator changes
the risk by

�R� =

Z
@L(�; �)

@�
f(xj�) ��(x) dx : (13{17)

If we were to require this to vanish for all ��(x), this would imply

@L

@�
= 0; all possible � : (13{18)

Thus the problem as stated has no truly stationary solution except in the trivial { and useless { case

where the loss function is independent of the estimated value �; if there is any \best" estimator by
the criterion of minimum risk, it cannot be found by variational methods.

Nevertheless, we can get some understanding of what is happening by considering (13{12)
for some speci�c choices of loss function. Suppose we take the quadratic loss function L(�; �) =

(�� �)2. Then (13{12) reduces to

R� =

Z
(�2 � 2�� + �2) f(xj�) dx (13{19)

or,

R� = (�� h�i)2 + var(�) (13{20)
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where var(�) � h�2i � h�i2 is the variance of the sampling pdf for �, and

h�ni �

Z
[�(x)]n f(xj�) dx (13{21)

is the n'th moment of that pdf . The risk (13{20) is the sum of two positive terms, and a good
estimator by the criterion of minimum risk has two properties:

(1) h�i = �

(2) var(�) is a minimum

These are just the two conditions which sampling theory has considered most important. An
estimator with property (1) is called unbiased [more generally, the function b(�) = h�i�� is called

the bias of the estimator �(x)], and one with both properties (1) and (2) was called e�cient by R.

A. Fisher. Nowadays, it is often called an unbiased minimum variance (UMV) estimator.

In Chapter 17 we shall examine the relative importance of removing bias and minimizing
variance, and derive the Cram�er{Rao inequality which places a lower limit on the possible value

of var(�). For the present, our concern is only with the failure of (13{17) to provide any optimal
estimator for a given loss function. This weakness of the sampling theory approach to parameter

estimation, that it does not tell us how to �nd the best estimator, but only how to compare

di�erent guesses, can be overcome as follows: we give a simple substitute for Wald's Complete
Class Theorem.

Reformulation of the Problem

It is easy to see why the criterion of minimum risk is bound to get us into trouble and is unable to

furnish any general rule for constructing an estimator. The mathematical problem was: for given
L(�; �) and f(xj�), what function �(x1 : : : xn) will minimize R�?

Although this is not a variational problem, it might have a unique solution; but the more

fundamental di�culty is that the solution will still, in general depend on �. Then the criterion of
minimum risk leads to an impossible situation { even if we could solve the mathematical minimiza-

tion problem and had before us the best estimator ��(x1 : : : xn) for each value of �, we could use

that result only if � were already known, in which case we would have no need to estimate. We
were looking at the problem backwards!

This makes it clear how to correct the trouble. It is of no use to ask what estimator is `best' for

some particular value of �; the answer to that question is always, obviously, �(x) = �, independent
of the data. But the only reason for using an estimator is that � is unknown. The estimator must

therefore be some compromise that allows for all possibilities within some prescribed range of �;
within this range it must do the best job of protecting against loss no matter what the true value
of � turns out to be.

Thus it is some weighted average of R�;

hRi =

Z
g(�)R�d� (13{22)

that we should really minimize, where the function g(�) � 0, measures in some way the relative
importance of minimizing R� for the various possible values that � might turn out to have.

But the mathematical character of the problem is completely changed by adopting (13{22) as

our criterion; we now have a solvable variational problem with a unique, well{behaved, and useful
solution. The �rst variation in hRi due to an arbitrary variation ��(x1 : : :xn) in the estimator is

�hRi =

Z
� � �

Z
dx1 � � �dxn

�Z
d� g(�)

@L(�; �)

@�
f(x1 : : : xnj�)

�
��(x1 : : :xn) (13{23)
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which vanishes independently of �� if

Z
d�g(�)

@L(�; �)

@�
f(x1 : : : xnj�) = 0 (13{24)

for all possible samples fx1 : : : xng.

Equation (13{24) is the fundamental integral equation which determines the `best' estimator

by our new criterion. Taking the second variation, we �nd the condition that (13{24) shall yield a
true minimum is

Z
d� g(�)

@2L

@�2
f(x1 : : :xnj�) > 0: (13{25)

Thus a su�cient condition for a minimum is simply @2L=@�2 � 0, but this is stronger than

necessary.

If we take the quadratic loss function L(�; �) = K(�� �)2, equation (13{24) reduces to

Z
d� g(�) (�� �) f(x1 : : :xnj�) = 0

or, the optimal estimator for quadratic loss is

�(x1 : : : xn) =

R
d�g(�)�f(x1 : : : xnj�)R
d� g(�) f(x1 : : : xnj�)

: (13{26)

But this is just the mean value over the posterior pdf for �:

f(�jx1 : : :xnI) =
g(�) f(x1 : : :xnj�)R
d� g(�) f(x1 : : :xnj�)

(13{27)

given by Bayes' theorem, if we interpret g(�) as a prior probability density! This argument shows,

perhaps more clearly than any other we have given, why the mathematical form of Bayes' theorem

intrudes itself inevitably into parameter estimation.

If we take as a loss function the absolute error, L(�; �) = j� � �j, then the integral equation

(13{24) becomes Z
�

�1

d� g(�) f(x1 : : : xnj�) =

Z 1

�

d�g(�) f(x1 : : : xnj�) (13{28)

which states that �(x1 : : :xn) is to be taken as the median over the posterior pdf for �:

Z
�

�1

d�f(�jx1 : : : xnI) =

Z 1

�

d� f(�jx1 : : :xnI) =
1

2
(13{29)

Likewise, if we take a loss function L(�; �) = (� � �)4, equation (13{24) leads to an estimator

�(x1 : : :xn) which is the real root of

f(�) = �3 � 3��2 + 3�2� � �3 = 0 (13{30)

where
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�n =

Z
d��n f(�jx1 : : :xnI) (13{31)

is the n'th moment of the posterior pdf for �. [That (13{30) has only one real root is seen on
forming the discriminant; the condition f 0(�) � 0 for all real � is just (�2 � �2) � 0.]

If we take L(�; �) = j�� �jk, and pass to the limit k ! 0, or if we just take

L(�; �) =

(
0 ; � = �

1 ; otherwise

)
(13{32)

Eq. (13{24) tells us that we should choose �(x1 : : : xn) as the \most probable value", or mode of

the posterior pdf f(�jx1 : : : xnI). If g(�) = const in the high{likelihood region, this is just the
maximum likelihood estimate advocated by Fisher.

In this result we see �nally just what maximum likelihood accomplishes, and under what

circumstances it is the appropriate method to use. The maximum likelihood criterion is the one in

which we care only about the chance of being exactly right; and if we are wrong, we don't care how
wrong we are. This is just the situation we have in shooting at a small target, where \a miss is as

good as a mile". But it is clear that there are few other situations where this would be a rational
way to behave; almost always, the amount of error is of some concern to us, and so maximum

likelihood is not the best estimation criterion.

Note that in all these cases it was the posterior pdf , f(�jx1 : : : xnI) that was involved. That
this will always be the case is easily seen by noting that our \fundamental integral equation" (13{24)

is not so profound after all. It can be written equally well as

@

@�

Z
d� g(�)L(�; �)f(x1 : : : xnj�) = 0: (13{33)

But if we interpret g(�) as a prior probability density, this is just the statement that we are indeed
to minimize the expectation of L(�; �); but it is not the expectation over the sampling pdf for �;

it is always the expectation over the Bayesian posterior pdf for �!

We have here an interesting case of \chickens coming home to roost". If a sampling theorist will
think his estimation problems through to the end, he will �nd himself obliged to use the Bayesian

mathematical algorithm even if his ideology still leads him to reject the Bayesian rationale for it.
But in arriving at these inevitable results, the Bayesian rationale has the advantages that (1) it leads

us to this conclusion immediately; (2) it makes it obvious that its range of validity and usefulness
is far greater than supposed by the sampling theorist. The Bayesian mathematical form is required

for simple logical reasons, independently of all philosophical hangups over \which quantities are

random?" or the \true meaning of probability."

Wald's complete class theorem led him to essentially the same conclusion: if the �j are discrete
and we agree not to include in our enumeration of states of Nature any �j that is known to be

impossible, then the class of admissible strategies is just the class of Bayes strategies [i.e., those that
minimize expected loss over a posterior pdf ]. If the possible �j form a continuum, the admissible
rules are the proper Bayesian ones; i.e., Bayes rules from proper (normalizable) prior probabilities.
But few people have ever tried to follow his proof of this; Berger (1985) does not attempt to present

it, and gives instead a number of isolated special results.

There is a great deal of mathematical nit{picking, also noted by Berger, over the exact situation

when one tries to jump into an improper prior in in�nite parameter spaces without considering
any limit from a proper prior. But for us such questions are of no interest, because the concept of
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admissibility is itself 
awed when stretched to such extreme cases. Because of its refusal to consider
any prior information whatsoever, it must consider all points of an in�nite domain equivalent; the

resulting singular mathematics is only an artifact that corresponds to no singularity in the real
problem, where prior information always excludes the region at in�nity.

For a given sampling distribution and loss function, we are content to say simply that the

defensible decision rules are the Bayes rules characterized by the di�erent proper priors, and their
well{behaved limits. This is the conclusion that was shocking to sampling theorists { including Wald

himself, who had been one of the proponents of the von Mises `collective' theory of probability { and
was psychologically perhaps the main spark that touched o� our present `Bayesian Revolution' in

statistics. To his everlasting credit, AbrahamWald had the intellectual honesty to see the inevitable
consequences of this result, and in his �nal work (1950), he termed the admissible decision rules,

\Bayes strategies".

E�ect of Varying Loss Functions

Since the new feature of the theory being expounded here lies only in the introduction of the
loss function, it is important to understand how the �nal results depend on the loss functions by

some numerical examples. Suppose that the prior information I and data D lead to the following

posterior pdf for a parameter �:

f(�jDI) = ke�k� ; 0 � � <1: (13{34)

The n'th moment of this pdf is

h�ni =

Z 1

0

�n f(�jDI) d� = n! k�n : (13{35)

With loss function (�� �)2, the best estimator is the mean value

� = h�i = k�1: (13{36)

With the loss function j�� �j, the best estimator is the median, determined by

1

2
=

Z
�

0

f(�jDI) d� = 1� e�k� (13{37)

or

� = k�1 log
e
(2) = 0:693h�i : (13{38)

To minimize h(���)4i, we should choose � to satisfy (13{30), which becomes y3�3y2+6y�6 = 0

with y = k�. The real root of this is at y = 1:59, so the optimal estimator is

� = 1:59 h�i: (13{39)

For the loss function (�� �)s+1 with s an odd integer, the fundamental equation (13{33) is

Z 1

0

(�� �)s e�k� d� = 0 (13{40)

which reduces to
sX

m=0

(�k�)m

m!
= 0 (13{41)
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The case s = 3 leads to (13{39),while in the case s = 5, loss function (�� �)6, we �nd

� = 2:025 h�i: (13{42)

As s ! 1; � also increases without limit. But the maximum-likelihood estimate, which corre-

sponds to the loss function L(�; �) = ��(� � �), or equally well to

lim
k!0

j�� �jk (13{43)

is � = 0. These numerical examples merely illustrate what was already clear intuitively; when the
posterior pdf is not sharply peaked, the best estimate of � depends very much on which particular

loss function we use.

One might suppose that a loss function must always be a monotonically increasing function of

the error j�� �j. In general, of course, this will be the case; but nothing in this theory restricts us
to such functions. You can think of some rather frustrating situations in which, if you are going to

make an error, you would rather make a large one than a small one. William Tell was in just that
�x. If you study our equations for this case, you will see that there is really no very satisfactory

decision at all (i.e., no decision has small expected loss); and nothing can be done about it.

Note that the decision rule is invariant under any proper linear transformation of the loss
function; i.e., if L(Di; �j) is one loss function, then the new one

L0(Di; �j) � a+ bL(Di; �j)
�1 < a <1

0 < b <1
(13{44)

will lead to the same decision, whatever the prior probabilities and data. Thus, in a binary decision

problem, given the loss matrix

Lij =

�
10 19
100 10

�

we can equally well use

L0
ij
=

�
0 1

10 0

�

corresponding to a = �10=9; b = 1=9. This may simplify the calculation of expected loss quite a
bit.

General Decision Theory

In the foregoing, we examined decision theory only in terms of one particular application; parameter

estimation. But we really have the whole story already; the criterion (13{33) for constructing the
optimal estimator generalizes immediately to the criterion for �nding the optimal decision of any

kind. The �nal rules are simple; to solve the problem of inference, there are four steps:

(1) Enumerate the possible states of nature �j , discrete or continuous, as the case may

be.

(2) Assign prior probabilities p(�j jI) which represent whatever prior information I you

have about them.

(3) Assign sampling probabilities p(Eij�j) which represent your prior knowledge about

the mechanism of the measurement process yielding the possible data sets Ei.

(4) Digest any additional evidence E = E1E2 � � � by application of Bayes' theorem, thus
obtaining the posterior probabilities p(�j jEI).
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That is the end of the inference problem, and p(�j jEI) expresses all the information about the �j
that is contained in the prior information and data. To solve the problem of decision there are

three more:

(5) Enumerate the possible decisions Di.

(6) Assign the loss function L(Di; �j) that tells what you want to accomplish.

(7) Make that decision Di which minimizes the expected loss over the posterior

probabilities for �j

After all is said and done, the �nal rules of calculation to which the theorems of Cox, Wald, and

Shannon lead us are just the ones which had been given already by Laplace and Daniel Bernoulli in
the 18'th century on intuitive grounds, except that the entropy principle generalizes the principle

of indi�erence in step (2).

Theoretically, these rules are now determined uniquely by elementary qualitative desiderata
of rationality and consistency. Some protest that they do not have any prior probability or loss

function. The theorem is that rationality and consistency require you to behave as if you had them;
for every strategy that obeys the desiderata, there is a prior probability and loss function which

would have led to that strategy; conversely, if a strategy is derived from a prior probability and
loss function, it is guaranteed to obey the desiderata.

Pragmatically, these rules either include, or improve upon, practically all known statistical

methods for hypothesis testing and point estimation of parameters. If you have mastered them,
then you have just about the entire �eld at your �ngertips. The outstanding thing about them is

their intuitive appeal and simplicity { if we sweep aside all the polemics and false starts that have
cluttered up this �eld in the past and consider only the constructive arguments that lead directly

to these rules, it is clear that the underlying rationale could be developed fully in a one{semester
undergraduate course.

However, in spite of the formal simplicity of the rules themselves, really facile application of

them in nontrivial problems involves intricate mathematics, and �ne subtleties of concept; so much
so that several generations of workers in this �eld misapplied them and concluded that the rules

were all wrong. So, we still need a good deal of leading by the hand in order to develop facility in

using this theory. It is like learning how to play a musical instrument { anybody can make noise
with it, but to play this instrument well requires years of practice.

COMMENTS

\Objectivity" of Decision Theory: Decision Theory occupies a unique position in discussion of
the logical foundations of statistics, because, as we have seen in (13{24) and (13{33), its procedures

can be derived from either of two diametrically opposed viewpoints about the nature of probability

theory. While there appears to be universal agreement as to the actual procedures that should be
followed, there remains a fundamental disagreement as to the underlying reason for them, having
its origin in the old issue of frequency vs. non{frequency de�nitions of probability.

From a pragmatic standpoint, such considerations may seem at �rst to be unimportant. How-

ever, in the attempt to apply decision{theory methods in real problems one learns very quickly

that these questions intrude in the initial stage of setting up the problem in mathematical terms.
In particular, our judgment as to the generality and range of validity of decision{theory methods

depends on how these conceptual problems are resolved. Our aim is to expound the viewpoint
according to which these methods have the greatest possible range of application.

Now we �nd that the main source of controversy here is on the issue of prior probabilities; on

the sampling theory viewpoint, if the problem involves use of Bayes' theorem then these methods
are just not applicable unless the prior probabilities are known frequencies. But to maintain this
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position consistently would imply an enormous restriction on the range of legitimate applications;
indeed, we doubt whether there has ever been a real problem in which the prior probabilities were,

in fact, known frequencies. But can the mathematical form of our �nal equations shed any light on
this issue?

Notice �rst that only the product g(�)L(�; �) is involved in (13{24) or (13{33); thus we could

interpret the problem in three di�erent ways:

(1) Prior Probability g(�), loss function L(�; �) = (�� �)2

(2) Uniform prior probability, loss function L(�; �) = g(�) (�� �)2

(3) Prior probability h(�), loss function g(�)(�� �)2=h(�),

but the optimal decision is just the same. This is equally true for any loss function.

We emphasize this rather trivial mathematical fact because of a curious psychological phenom-

enon. In expositions of decision theory written from the sampling theory viewpoint [for example,

Cherno� and Moses (1959)], the writers are reluctant to introduce the notion of prior probability.
They postpone it as long as possible, and �nally give in only when the mathematics forces them

to recognize that prior probabilities are the only basis for choice among the di�erent admissible
decision rules. Even then, they are so unhappy about the use of prior probabilities that they feel it

necessary always to invent a situation { often highly arti�cial { which makes the prior probabilities
appear to be frequencies; and they will not use this theory for any problem where they do not see

how to do this.

But these same writers do not hesitate to pull a completely arbitrary loss function out of thin
air without any basis at all, and proceed with the calculation! The equations show that if the �nal

decision depends strongly on which particular prior probability assignment we use, it is going to
depend just as strongly on which particular loss function we use. If one worries about arbitrariness

in the prior probabilities, then in order to be consistent, he ought to worry just as much about
arbitrariness in the loss functions. If one claims (as sampling theorists did for decades and as some

still do) that uncertainty as to the proper choice of prior probabilities invalidates the Laplace{Bayes
theory, then in order to be consistent, one must claim also that uncertainty as to the proper choice

of loss functions invalidates Wald's decision theory.

The reason for this strange lopsided attitude is closely connected with a certain philosophy
variously called behavioristic, or positivistic, which wants us to restrict our statements and concepts

to objectively veri�able things. Therefore the observable decision is the thing to emphasize, while
the process of plausible reasoning and the judgment described by a prior probability must be

deprecated and swept under the rug. But we see no need to do this, because it seems to us obvious

that rational action can come only as the result of rational thought.

If we refuse to consider the problem of rational thought merely on the grounds that it is not

\objective", the result will not be that we obtain a more \objective" theory of inference or decision.
The result will be that we have lost the possibility of getting any satisfactory theory at all, because
we have denied ourselves any way of describing what is actually going on in the decision process.

And, of course, the loss function is just the expression of a purely subjective value judgment, which
can in no way be considered any more \objective" than the prior probabilities.

In fact, prior probabilities are usually far more \objective" than loss functions, both in the

mathematical theory and in the everyday decision problems of \real life". In the mathematical
theory we have general formal principles { maximum entropy, transformation groups, marginaliza-

tion { that remove the arbitrariness of prior probabilities for a large class of important problems,
which includes most of those discussed in textbooks. But we have no such principles for determining

loss/utility functions.

This is not to say that the problem has not been discussed. de Groot (1970) notes the very weak
abstract conditions (transitivity of preferences, etc.) su�cient to guarantee existence of a utility
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function. Long ago, L. J. Savage considered construction of utility functions by introspection. This
is described by Cherno� & Moses (1959); suppose there are two possible rewards r1 and r2; then

for what reward r3 would you be indi�erent between (r3 for sure), or (either r1 or r2 as decided
by the 
ip of a coin)? Presumably, r3 is somewhere between r1 and r2. If one makes enough such

intuitive judgments and manages to correct all intransitivities, a crude utility function emerges.
Berger (1985, Chapter 2) gives a scenario in which this happens.

However, this is hardly a practical procedure, much less a formal principle; and the result is

just as arbitrary as if one simply drew a curve freehand. Indeed, the latter is much easier and cannot
get one into intransitivity di�culties. One can, of course, invent a crude prior in the same way,

as L. J. Savage often demonstrated. Such constructions, if one can transfer them into a computer,
will be better than nothing; but they are clearly desperation moves in lieu of a really satisfactory

formal theory such as we have in the principles of maximum entropy and transformation groups
for priors.

Noting that the decision depends only on the product of loss function and prior suggests what

seems at �rst an attractive possibility; could we simplify the foundations of this theory so as to make
it obvious that we need only a single function, not two? The writer pondered this for some time,

but decided �nally that this is not the right direction for future development, because (1) priors
and loss functions have very di�erent { almost opposite { roles to play, both in the mathematical

theory and in \real life", and (2) the theory of inference involving priors is more fundamental than
that of loss functions; the latter would need to be developed much further before it would be �t to

join with priors into a single mathematical quantity.

Some authors get themselves into strange problems in approaching decision theory. L. J. Savage
(1954) faces many inexplicable di�culties. He thinks (p. 16) that the proverbs \Look before you

leap" and \You can cross that bridge when you come to it" are contradictory. We feel that we
routinely obey both, and see no con
ict between them. That is, we do not act without cousidering

the likely consequences; but at the same time we do not waste time and e�ort planning for future
contingencies that may never happen.

But the original formulaion of Wald contemplates, following the orthodox line of thought, that

before seeing the data one will plan in advance for every possible contingency and list the decision
to be made after getting every conceivable data set. The problem with this is that the number of

such data sets is usually astronomical. The Bayesian formulation saves us from this; whatever data
set is actually observed, we enter it into the computer program and it calculates the appropriate

response for that data set. It is wasteful and irrelevant to calculate the response to any data set
that is not observed. So carrying this observation a bit further, we �ll out our proverb list with:

\Never make an irrevocable decision until you have to."

Loss Functions in Human Society: We note the sharp contrast between the roles of prior
probabilities and loss functions in human relations. People with similar prior probabilities get

along well together, because they have about the same general view of the world and philosophy
of life. People with radically di�erent prior probabilities cannot get along { this has been the root
cause of all the religious wars and most of the political repressions throughout history.

Loss functions operate in just the opposite way. People with similar loss functions are after the
same thing, and are in contention with each other. People with di�erent loss functions get along
well because each is willing to give something that the other wants. Amicable trade or business
transactions, advantageous to all, is possible only between parties with very di�erent loss functions.

We illustrated this by the example of insurance above.

In \real life" decision problems, each man knows, pretty well, what his prior probabilities are;
and because his beliefs are based on all his past experience, they are not easily changed by one
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more experience, so they are fairly stable. But in the heat of argument he may lose sight of his loss
function.

Thus the labor mediator must deal with parties with sharply opposing ideologies; policies

considered good by one are considered evil by the other. The successful mediator realizes that
mere talk will not alter prior beliefs; and so his role must be to turn the attention of both parties

away from this area, and explain clearly to each what his loss function is. In this sense, we can
claim that in real life decision problems, the loss function is often far more \subjective" (in the

sense of being less well �xed in our minds) than the prior probabilities.

Indeed, failure to judge one's own loss function correctly is one of the major dangers that

humans face. Having a little intelligence, one can invent myths out of his own imagination, and
come to believe them. Worse, one person may persuade thousands of others to believe his private

myths, as the sordid history of religious, political, and military disasters shows.

We think that these considerations have a bearing on other social problems. For example,

some psychologists never tire of trying to explain criminal behavior in terms of early childhood
experiences. It is conceivable that these may generate a certain general `propensity' to crime; but

the fact that the vast majority of people with the same experiences do not become criminals, shows
that a far more important and immediate cause must exist. Perhaps criminal behavior has a much

simpler explanation: poor reasoning, leading to a wrongly perceived loss function. Whatever our
early childhood experiences, law abiding citizens have just the same motivations as do criminals; all

of us have felt the urge to commit robbery, assault, and murder. The di�erence is that the criminal
does not think ahead far enough to appreciate the predictable consequences of his actions; we are

not surprised to learn that most violent criminals have very low intelligence.

Inability to perceive one's own loss function can have disastrous personal consequences in other

ways. Consider the case of Ramanujan, whom many would consider to be, in one particular area,
the greatest mathematical genius who ever lived. His death at age 32 was probably the result of

his own ridiculous dietary views. He refused to eat the food served in Hall at Trinity College,
Cambridge (although it was undoubtedly more wholesome than any food he had ever eaten before

coming to England) and tried to subsist on rotten fruit shipped from India without refrigeration.

A strikingly similar case is that of Kurt G�odel, whom many would consider the greatest {
certainly the best known { of all logicians. He died of starvation in a hospital with the �nest food
facilities, because he became obsessed with the idea that the doctors were trying to poison him. It

is curious that the greatest intellectual gifts sometimes carry with them the inability to perceive
simple realities that would be obvious to a moron.

However, we stress that the real world is vastly more complicated than supposed in Wald's

theory, and many real decision problems are not covered by it. For example, the state of Nature
tomorrow might be in
uenced by our decision today (as when one decides to get an education).

Recognizing this is a step in the direction of game theory, or dynamic programming. But to treat
such problems does not require any departure from the principles of probability theory as logic;
only a generalization of what we did above.

Actually, human intuition, in making decisions with seemingly no rational basis, does surpris-

ingly well; persons with no mathematical comprehension whatsoever may still make good decisions.
However, \intuition" may make use of facts and memories so deeply buried in the subconscions

that one is not aware of them.

A New Look at the Je�reys Prior: Our noting that the optimal decision depends only on the
product of prior probability and loss function sets o� several other lines of thought. As we noted

in Chapter 12, Je�reys (1939) proposed that, in the case of a continuous parameter � known to
be positive, we should express prior ignorance by assigning, not uniform prior density, but a prior
density proportional to (1=�). The theoretical justi�cation of this rule was long unclear; but it
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yields very sensible{looking results in practice, which led Je�reys to adopt it as fundamental in
his signi�cance tests. We learned that, in the case that � is a scale parameter, the Je�reys prior

is uniquely determined by invariance under the scale transformation group; but now we can see
a quite di�erent justi�cation for it. If we use the absolute error loss function j� � �j when � is

known to be positive, then to assign g(�) = const. in (13{24) and (13{33) amounts to saying that
we demand an estimator which yields, as nearly as possible, a constant absolute accuracy for all

values of � in 0 < � <1. That is clearly asking for too much in the case of large �; and we must
pay the price in a poor estimate for small �. But the median of Je�reys' posterior distribution

is mathematically the same thing as the optimal estimator for uniform prior and loss function
j� � �j=�; we ask for, as nearly as possible, a constant percentage accuracy over all values of �.

This is, of course, what we do want in most cases where we know that 0 < � <1. Another reason

for the superior performance of Je�reys' rule is thus made apparent, if we re{interpret it as saying
that the (1=�) factor is part of the loss function.

Decision Theory is not Fundamental

What parts of the theories expounded here will be a permanent part of human thinking, what

parts may evolve on into di�erent forms in the future? We can only speculate, but it seems clear
to the writer that there is something necessary and timeless in the methods of inference developed

here; not only their compelling theoretical basisy explained in Chapters 1 and 2, but equally well,

the beautiful way they work out in practice in all the later Chapters { always giving us the right
answer to whatever question we ask of them, while orthodox methods yield sense and nonsense

about equally often { convinces us that these methods cannot be altered in any substantive way in
the future.

However, views as to the foundation of those methods may change; for example, instead of

our desiderata of logical consistency, future workers may prefer desiderata of optimal information
processing, as suggested by the work of Zellner (1988). Indeed, many advantages would result

from more common recognition that inference has fundamentally nothing to do with `randomness'
or `chance' but is concerned rather with optimal processing of information. We noted at the end

of Chapter 2 how G�odel's theorem appears as a platitude rather than a paradox, as soon as we
recognize the information processing aspect of mathematics.

But we can feel no such certainty about the decision theory addendum to inference. In the

�rst place, many present applications already require an extension to, or beyond, game theory
or dynamic programming. The State of Nature may be chosen by another person; or it may

be in
uenced by our decision without the intervention of a conscious second agent. There may be
more than two agents involved. They might be either adversaries or helpful friends. Those are more

complicated situations than the ones we have considered here. We do not think such extensions

appropriate to our present topic of Scienti�c Inference, because we do not think of ourselves as
playing an adversary game against Nature. However, future scientists may �nd good reasons to

consider the more general theory.

For all the reasons noted in this Chapter, it now appears that from a fundamental standpoint
loss functions are less �rmly grounded than are prior probabilities. This is just the opposite of the

view that propelled the Wald{inspired development of decision theory in the 1950's, when priors
were regarded as vague and ill{de�ned, but nobody seemed to notice that loss functions are far more
so. For reasons we cannot explain, loss functions appeared to workers at that time to be \real" and
de�nite, although no principles for determining them were ever given, beyond the platitude that

any function with a continuous derivative appears linear if we examine a su�ciently small piece of
it.

y Of course, better proofs than those we were able to give in Chapter 2 will be found.
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In the meantime, there have been several advances in the technique for assigning priors by
logical analysis of the prior information; but to the best of our knowledge we have as yet no formal

principles at all for assigning numerical values to loss functions; not even when the criterion is
purely economic, because the utility of money remains ill{de�ned.

Another Dimension?

There is another respect in which loss functions are less �rmly grounded than are prior probabilities.

We consider it an important aspect of \objectivity" in inference { almost a principle of morality {
that we should not allow our opinions to be swayed by our desires; what we believe should be

independent of what we want. But the converse need not be true; on introspection, we would
probably agree that what we want depends very much on what we know, and we do not feel guilty

of any inconsistency or irrationality on that account.z

Indeed, it is clear that the act of assigning a loss function is itself only a means of describing

certain prior information about the phenomena of interest, which now notes not just their plau-
sibilities, but also their consequences. Thus a change in prior information which a�ects the prior

probabilities could very well induce a change in the loss function as well.

But then, having admitted this possibility, it appears that value judgments need not be intro-

duced in the form of loss functions at all. Already at the end of Chapter 1 we noted the possibility
of future `multi{dimensional' models of human mental activity. In view of the above considerations,

the doors now seem wide open for new developments in that direction; representing a mental state
about a proposition or action not by one coordinate (plausibility) as in present probability theory;

but by two coordinates (plausibility and value). Thus, while the principles of `one{dimensional'
inference seem permanent, the future can still bring many kinds of change in the representation of

value judgments, which need not resemble present decision theory at all. But this in turn reacts
back on the question of foundations of probability theory.

Thomas Bayes (1763) thought it necessary to explain the notion of probability in terms of
that of expectation;y and this persisted to modern times in the work of both de Finetti (1972,

1974) and Wald (1950). At �rst glance, it appears that the work of de Finetti on foundations of
probability theory could hardly be more di�erent in outlook from Wald's decision theory; yet these

two avenues to Bayesianity shared the common premise that value judgments are in some way
primary to inference.

de Finetti would base probability theory on the notion of \coherence", which means roughly
that in betting one should behave as if he assigned probabilities to the events (dice tosses, etc.)

being betted on; but those probabilities should be chosen so that he cannot be made a sure loser,
whatever the �nal outcome of those events.

It has always seemed objectionable to some, including this writer, to base probability theory
on such vulgar things as betting, expectation of pro�t, etc. Somehow, we think that the principles

of logic ought to be on a higher plane. But that was only an aesthetic feeling; now in recognizing
the inde�nite and provisional nature of loss functions we have a more cogent reason for not basing

probability theory on decisions or betting. Any rules which were found to be coherent but not
consistent, would be unusuable in practice because a well{posed question would have more than

one \right" answer with nothing to choose between them. This is, in our view, still another aspect

z Quasimodo, condemned by an accident of Nature to be something intermediate between man and gar-

goyle, wished that he had been made a whole man; but after learning about the behavior of men, he wished

instead that he had been made a whole gargoyle: \Oh, why was I not made of stone like these?"
y The di�culty of reading Bayes today can be appreciated from the bewildering sentence in which he states

this: \The probability of any event is the ratio between the value at which an expectation depending on the

happening of the event ought to be computed, and the value of the thing expected upon its happening."
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of the superiority of Richard Cox's approach, which stresses logical consistency instead and, just
for that reason, is more likely to have a lasting place in probability theory.


