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CHAPTER 20

TREND AND SEASONALITY IN TIME SERIES

\� � � both London and Dublin by reason of the great and casual Accession of

Strangers who die therein, rendred them incapable of being Standards for this

purpose; which requires, if it were possible, that the People we treat of should

not at all be changed, but die where they were born, without any Adentitious

Increase from Abroad, or Decay by Migration elsewhere."

- - - Edmund Halley (1693)

The observed time series generated by the real world seldom appear to be \stationary" but exhibit

more complicated behavior. In most series, particularly demographic or economic data, trend is the

most common form of nonstationarity. Many economic time series are so dominated by trend (due,

for example, to steadily rising population or in
ation) that any attempt to detect other regularities

like cyclical 
uctuations or settling back after response to a shock, can be more misleading than

helpful until we have a safe way of dealing with trend.

The problem has been with us from the very beginning, as our opening quotation shows. In

that work Edmund Halley compiled the �rst tables of mortality; but he perceived that the data on

births and deaths from London and Dublin were so dominated by trend (both cities were growing

rapidly) that the information he needed could not be extracted from them. Instead he used data

from the city of Breslau in Silesia (today called Wroclaw, in what is now Poland) because the people

there were more meticulous in record keeping and less inclined to migrate.

Likewise, many time series are so dominated by cyclic 
uctuations (seasonal e�ects in economic

date, hum in electrical circuits) that it frustrates the attempt to extract an underlying \signal"

such as a long-term trend from a short run of data. In the present Chapter we examine what

probability theory has to say about the similar (logically, almost identical) problems of extracting

the information one wants in spite of such contaminations.

Previous Methods

The traditional procedures do not apply probability theory to this problem; and indeed, do not

even recognize the possibility that probability theory might be applied. Instead, one resorts to the

same kind of intuitive ad hockeries that we have noted so often before. The usual ones are called

\detrending" and \seasonal adjustment" in the economic literature, \�ltering" in the electrical

engineering literature. Like all such ad hockeries not derived from �rst principles, they capture

enough of the truth to be usable in many problems, but they are less than optimal in most and

dangerously misleading in some.

The almost universal detrending procedure in economics is to suppose the data (or the log-

arithm of the data) to be y(t) = x(t) + Ct + e(t), composed additively of a linear \trend" Ct, a

random \error" or \noise" e(t), and the component of interest x(t). We estimate the trend com-

ponent, subtract it from the data, and proceed to analyze the resulting \detrended data" for other

e�ects. However, many writers have noted that conventional detrending may introduce spurious

artifacts that distort the evidence for other e�ects, and render suspect some of the conclusions that

one tries to draw from the data. Detrending may even destroy the relevance of the data for our

purposes.

Merely to recognize the unsatisfactory nature of this procedure does not in itself suggest an

alternative that would be any better; and nothing better is to be found in the orthodox literature.
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To �nd it we need a deeper theoretical analysis. Now very fundamental theorems indicate that

Bayesian methods are the optimal way of dealing with any such problems of inference. Indeed,

it may be that the Bayesian method of dealing with trend may prove to be the most important

contribution of this work to practical econometrics.

Likewise, the traditional way of dealing with seasonal e�ects is to produce \seasonally adjusted"

data, in which one subtracts an estimate of the seasonal component from the true data, then tries

to analyze the adjusted data for other e�ects. Indeed, most of the economic time series data one

can obtain have been rendered nearly useless because they have been seasonally adjusted in an

irreversible way that has destroyed information which probability theory could have extracted from

the raw data. We think it imperative that this be recognized, and that researchers be able to obtain

the true, unmutilated data.

Electrical engineers would think instead in terms of fourier analysis and resort to \high{pass

�lters" and \band{rejection �lters" to deal with trend and seasonality. Again, the philosophy is to

produce a new time series (the output of the �lter) which represents in some sense an estimate of

what the real series would be if the contaminating in
uence were absent. Then choice of the \best"

physically realizable �lter is a di�cult and basically indeterminate problem.

The Bayesian procedure (direct application of probability theory) leads us to an entirely dif-

ferent philosophy in that we do not seek to remove the trend or seasonal component from the data;

that is fundamentally impossible because there is no way to know the \true" trend or seasonal term,

and any assumption about them is almost certain to inject false information into the detrended,

seasonally adjusted, or �ltered series. Rather, we seek to remove the e�ect of trend or seasonality

from our �nal conclusions, while leaving the actual data intact. We develop the Bayesian procedure

for this and compare it in detail to the conventional one.

The Bayesian Procedure

First, we analyze the simplest possible nontrivial model, which can be solved completely and will

enable us to understand the exact relation between the two procedures. Having this understand-

ing, the generalization to the most complicated multivariate case will be straightforward, with no

surprises.

Suppose the model consists of only a single sinusoid and a linear trend: y(t) = A sin!t+Bt+

e(t) where A is the amplitude of interest to be estimated, and B is the unknown trend rate. If

the data are monthly economic data and the sinusoid represents a seasonal e�ect, then ! will be

2�=12 = 0:524. But, for example, if we are trying to detect a cycle with a period of twenty years,

! will be :524=20 =; 00262. Estimation of an unknown ! from such data is the very important

problem of spectrum analysis, considered in Chapter 21; for the present we suppose ! known.

Writing for brevity s(t) � sin(!t), our model equation is then:

y(t) = As(t) + B t + e(t) (20{1)

and the available data D � (y1; � � � ; yN) are values of this sampled at equal time intervals t =

1; 2; � � � ; N . Assigning the noise an iid gaussian prior probability density function et � N(0; �), the

sampling pdf for the data is

p(yjA;B; �) =

�
1

2��2

�N=2

exp

"
�

1

2�2

NX
t=1

(yt � Ast �B t)2

#
(20{2)

and as in any gaussian calculation, the �rst task is to rearrange the quadratic form
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Q(A;B) �
X
t

(yt � Ast �B t)2

= N
h
y2 + A2 s2 +B2t2 � 2Asy � 2B ty + 2AB ts

i (20{3)

where

y2 �
1

N

NX
t=1

y2t ; sy �
1

N

NX
t=1

styt ; (20{4)

etc. denote averages over the data sample. Three of these averages, (s2; t2; ts) are determined by

the \design of the experiment" and can be known before one has the data. In fact, we have nearly

s2 '
1

2
; t2 '

1

3
N2 (20{5)

with errors of relative order O(1=N), while ts is highly variable. It is certainly less than N=2, since

that could be achieved only if s(t) = 1 at every sampling point. Generally, ts is much less than

this, of the order ts ' 1=! due to near cancellation of positive and negative terms.

The other three averages (y2; sy; ty) depend on the data and are the \su�cient statistics" for

our problem, to be calculated as soon as one has the data.

Suppose that it is the seasonal amplitude A that we wish to estimate, while the trend rate

B is the nuisance parameter that makes the problem complicated. We want to make its e�ects

disappear, as far as is possible. We shall do this by �nding the joint posterior pdf for A and B

p(A;BjDI) (20{6)

and integrating out B to get the marginal posterior pdf for A

p(AjDI) =

Z
p(A;BjDI) dB (20{7)

This is the quantity that tells us everything the data D and prior information I have to say about

A, whatever the value of B. Conversely, if we wanted to estimate B, then A would be the nuisance

parameter, and we would integrate it out of (20|6) to get the marginal posterior p(BjDI).

In the limit of di�use priors for A and B (i.e., their prior pdf 's do not vary appreciably over

the region of high likelihood), the appropriate integration formula for (20|7) is

Z
1

�1

exp

�
�
Q(A;B)

2�2

�
dB = (const:)� exp

n n

2�2
(t2 s2 � ts

2
) (A� Â)2

o
(20{8)

where

Â �
t2 sy2 � ts

2
ty

2

t2 s2 � ts
2

(20{9)

and the (const:) is independent of A. Thus the marginal posterior pdf for A is proportional to

(20|8), and the Bayesian estimate of A, regardless of the value of B, is

(A)est = Â � �

s
t2

N(t2 s2 � ts
2
)

(20{10)
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However, orthodox writers have railed against this process of integrating out nuisance param-

eters { in spite of the fact that it is uniquely determined by the rules of probability theory as the

correct procedure { on the ideological grounds that the probability of a parameter is meaningless

because the parameters are not `random' variables; and even worse, in the integration we intro-

duced a prior that they consider arbitrary. But, independently of all such philosophical hangups,

we can examine how the Bayesian and orthodox procedures are related mathematically.

How are they related?

The integration of a nuisance parameter may be related to the detrending procedure as follows.

The joint posterior pdf may be factored into marginal and conditional pdf 's in two di�erent ways:

p(A;B; jDI) = p(AjDI) p(BjA;DI) (20{11)

or equally well,

p(A;BjDI) = p(AjBDI) p(BjDI) (20{12)

From (20|11) we see that (20|7) follows at once. From (20|12) we see that (20|89) can be

written as

p(AjDI) =

Z
p(AjBDI) p(BjDI) dB (20{13)

Thus the marginal pdf for A is a weighted average of the conditional pdf 's with B known:

p(AjBDI) (20{14)

But if B is known, then (20|14), in its dependence on A, is just (20|2) with B held �xed. This

is, from (20|3),

P (AjBDI) / exp

"
Ns2

2�2
(A�A�)2

#
(20{15)

where

A� �
sy � Bts

s2
(20{16)

But this just the estimate that one would make by ordinary least squares (OLS) �tting of As(t) to

the detrended data y(t)det � y(t)� Bt

A� =
sydet

s2
(20{17)

That is, A� is the estimate the orthodoxian would make if he estimated the trend rate to be B.

If his estimate was exactly correct, then he would indeed �nd the best estimate possible; but any

error in his estimate of the trend rate will bias his estimate of A.

The Bayesian estimate of A obtained from (20|13/ does not assume any particular trend

rate B; it is a weighted average over all possible values that the trend rate might have, weighted

according to their respective probabilities. Thus if the trend rate is very well determined by the

data, so that the probability p(BjDI) in (20|26) has a very sharp peak, then the Bayesian and

orthodoxian will be in essential agreement on the estimate of A. If the trend rate is not well
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determined by the data, then the Bayes estimate is a more cautious, conservative one that \hedges

its bets" by taking into account all possible values of trend rate.

But while an orthodoxian would presumably accept what we have done as mathematically

correct, this argument would not convince him of the superiority of the Bayesian estimate, because

he judges estimates by a di�erent criterion. It is the sampling distribution for the estimate that is,

for him, all-important. So let us investigate this.

Comparison of Bayesian and Conventional Estimates

Having found a Bayesian estimator, which theorems demonstrate to be optimal by the Bayesian

criterion of performance, nothing prevents us from examining its performance from the \orthodox"

sampling theory viewpoint and comparing it with orthodox estimates. Then let ~A and ~B be the

unknown true values of the parameters, and let us describe the situation as it would appear to one

who already knew ~A and ~B, but not what data we have found. As he would know, but unknown

to us, our data vector will in fact be

yt = ~Ast + ~B t + et (20{18)

and we shall calculate the statistic

sy = ~As2 + ~B ts+ es (20{19)

in which the �rst two terms are �xed (i.e. independent of the noise) and only the last varies with

di�erent noise samples.

Similarly, he knows what is unknown to us; that we shall �nd the statistic

ty = ~A ts+ ~B t2 + et (20{20)

Substituting (2) and (3) into (3) we �nd that ~B cancels out and the Bayes estimate reduces to

(A)Bayes = ~A+
t2 es � ts et

t2 s2 � ts
2

(20{21)

which is exactly independent of the true trend rate ~B. Therefore the Bayesian estimate does indeed

eliminate the e�ect of trend; one could hardly hope to do so more completely than that.

On the other hand, if one uses the conventional OLS estimator ( ) with detrended data [yt�B̂t]
based on any estimate B̂, he will �nd instead

(A)orthodox = ~A+
es

s2
+
h
~B � (Â)

i ts

; s2
(20{22)

and any error in estimation of the trend contributes an error in the estimate of the seasonal. But

if one uses the OLS estimate of the trend,

B̂ =
ty

t2

we �nd

(A)orth = ~A+
es s2

�

ts
2 ~A+ ts et

t2 s2

= (1� r2) ~A+
t2 s� ts et

t2 s2

(20{23)
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where

r �
tsp
t2 s2

(20{24)

is the sample correlation coe�cient of t and s(t). Thus (6) is also exactly independent of the true

trend rate ~B; but orthodox teaching would hold that the estimator (6) has a negative bias.

But in further comparison of (4) and (6) we see that in fact

(A)orth = (1� r2)(A)Bayes (20{25)

and so if the othodoxian corrected the bias simply by multiplying the detrended estimator (6) by

(1� r2) he would be led to exactly the Bayes estimate.

However, having recognized what he would consider a shortcoming of (6) and perceiving that

the Bayesian result (4) has at least the merit (from his viewpoint) of being unbiased, it does not

follow that the Bayesian solution is the best possible one. It is far from clear that the optimal

estimator can be found merely by multiplying the OLS estimate by a constant. Indeed, one who

has absorbed a strong anti-Bayesian indoctrination would, we suspect, reject any such suggestion

and would say that we should be able to correct the defects of (6) by a little more careful thinking

about the problem from the orthodox viewpoint. Let us try.

An Improved Orthodox Estimate

Orthodox reasoning runs about as follows. If one had in mind only the seasonal term and was not

aware of trend, one would be led to estimate the cyclic amplitude as

Â(0) =
sy

s2
; (20{26)

the conventional regression solution. Many di�erent lines of reasoning, including Ordinary Least

Squares (OLS) �tting of the data, lead us to this result.

But then one realizes that (20|26) is not a very good estimate because it ignores the disturbing

e�ect of trend. A better seasonal estimate could be made from the detrended data

(yt)det � yt � B̂ t (20{27)

where B̂ is an estimate of the trend rate, and it seems natural to estimate it by the conventional

regression rule

B̂(0) =
ty

t2
(20{28)

from OLS �tting of a straight line to the data. Using the detrended data (20|27) in (20|26)

yields the corrected cyclic amplitude estimate

Â(1) =
sy � ts B̂(0)

s2
(20{29)

or

Â(1) =
t2 sy � ts ty

t2 s2
(20{30)
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which is the conventional orthodox result for the problem.

But now we see that this is not the end of the story; for A and B enter into the model on just

the same footing. If it is true that we should estimate the cyclic amplitude A from detrended data

(16-30), surely it is equally true that we should estimate the trend rate B from the decyclized, or

\seasonally adjusted" data:

yt � Â(0) st (20{31)

Thus a better estimate of trend than (20|28) would be

B̂(1) =
ty � ts Â(0)

t2
(20{32)

or with the OLS estimate (16{29),

B̂(1) =
s2 ty � ts sy

t2 s2
(20{33)

But now, with this better estimate of trend, we can get a better estimate of the seasonal than

(20|29) by using (20|33):

Â(2) =
sy � ts B̂(1)

s2
(20{34)

But this improved estimate of the seasonal amplitude will in turn enable us to get a still better

estimate of trend B̂(2) � � �; and so on forever!

Therefore, the reasoning underlying the conventional detrending procedure, if applied consis-

tently, does not stop at the conventional result (20|30). It leads us into an in�nite sequence of

back-and-forth revisions of our estimates, each set [Â(n); B̂(n)] better than the last [Â(n�1); B̂(n�1) ].

Then does this in�nite sequence converge to a �nal \best of all" set of estimates [Â(1)B̂(1) ]?

If so, this is surely the optimal way of dealing with a nuisance parameter from the orthodox

viewpoint. But can we calculate these �nal optimal estimates directly without going through the

in�nite sequence of updatings?

To answer this de�ne the (2 � 1) vector of n'th order estimates:

Vn �

�
Â(n)

B̂(n)

�
(20{35)

Then the general recursion relation is, as we see from (20|29), (20|89), (20|34),

Vn+1 = V0 +M Vn (20{36)

where the matrix M is

M =

�
0 �ts=s2

ts=t2 0

�
(20{37)

The solution of (19) is

Vn = (1 +M +M2 + � � �+Mn)V0 (20{38)
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and since, by Schwartz inequality, the eigenvalues of M are less than unity, this in�nite series sums

to

V1 = (I �M)�1V0 (20{39)

Now we �nd readily that

(I �M)�1 =
1

t2 s2 � ts
2

�
t2 s2 �t2 ts
�s2 ts t2 s2

�
(20{40)

and so our �nal best of all estimate is

Â(1) = t2 s2 Â(0) � t2 ts B̂(0)t2 s2 � ts
2

=
t2 sy � ts ty

t2 s2 � ts
2

(20{41)

But this is precisely the Bayesian estimate that we calculated far more easily in (20|10). Likewise,

the �nal best estimate of trend rate is

B̂(1) =
s2 ty � ty sy

t2 s2 � ts
2

(20{42)

which is just the Bayesian estimate that we get by integrating out A as a nuisance parameter from

(20|6).

This is another example of what we found before (Chapter 13); if the orthodoxian will think

his estimation problems through to the end, he will �nd himself obliged to use the mathematical

form of the Bayesian solution, even if his ideology still leads him to reject the Bayesian rationale for

it; this mathematical form is required by elementary requirements of rationality and consistency,

quite independently of all philosophical stances.

Now we see the relation between the orthodox and Bayesian procedures in an entirely di�erent

light. The procedure of integrating out a nuisance parameter sums an in�nite series of mutual

updatings for us, and does it in such a simple, unobtrusive way that to the best of our knowledge,

no orthodox writer has yet noticed that this is what is happening. What we have just found will

generalize e�ortlessly to far more complex problems.

As we noted before (Jaynes, 1976) in many other cases, it is a common phenomenon that or-

thodox results, when improved to the maximum possible extent, become mathematically equivalent

to the results that Bayesian methods give us far more easily. Indeed, it is one of the problems we

have that Bayesian and Maximum Entropy methods are so slick and e�cient that orthodoxians,

unaccustomed to getting results so easily, accuse us of claiming to get something for nothing.

Thus in the long run, attempts to evade the use of Bayes' theorem do not lead to di�erent

�nal results; they only make us work harder to get them. So much harder that many important

Bayesian results { even some that were given already by Je�reys (1939) { are still unknown in the

orthodox literature.

The Orthodox Criterion of Performance

In our endeavor to understand this situation fully, let us examine it from a di�erent viewpoint.

According to orthodox theory, the accuracy of an estimation procedure is to be judged by the

sampling distribution of the estimator, while in Bayesian theory it should be judged from the

posterior pdf for the parameter. Let us compare these. For the orthodox analysis, note that in
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both (4) and (6) the terms containing the noise vector e combine to make a linear combination of

the form

ge �
1

N

NX
t=1

gtet (20{43)

Then over the sampling pdf for the noise we have

E(ge) =
1

N

X
t

gtE(et) = 0 (20{44)

E[(ge)2] =
1

N

X
gtgt0E(etet0) = g2 �2 (20{45)

since E(etet0) = �2�(t; t0). Thus, the sampling pdf would estimate this error term by (mean �
standard deviation):

(ge)est = 0� �

q
g2 (20{46)

For the Bayes estimator (4)

gt =
t2st � tst

t2 s2 � ts
2

(20{47)

and after some algebra we �nd

g2 =
t2(t2s2 � ts

2
)

s2 (1� r2)
(20{48)

where r is the correlation coe�cient de�ned before. Thus the sampling distribution for the Bayes

estimator (4) has mean � standard deviation of

~A � �

q
N̂s2(1� r2) (20{49)

while for the orthodox estimator this is

(1� r2) ~A� �

s
1� r2

Ns2
(20{50)

The General Case

Having shown the nature of the Bayesian results from several di�erent viewpoints, we now gener-

alize them to a fairly wide class of useful problems. We assume that the data are not necessarily

uniformly spaced in time, that the noise probability distribution, although Gaussian, is not neces-

sarily stationary or white (uncorrelated) and that the prior probabilities for the parameters are not

necessarily independent. It turns out that the computer programs to take all this into account are

not appreciably more di�cult to write, if the most general analytical formulas are in view when we

write them.

So now we have the model

yt = T (t) + F (t) + et (20{51)
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where T (t) is the trend function, f(t) is the seasonal function and et is the irregular component.

We de�ne

T (t) =
X


k�k(t) (20{52)

f(t) =
X

[AkC(kt) + BkS(kt)] (20{53)

The joint likelihood of all the parameters is

L(
; A;B; �) = p(y1; � � � ; yN j
AB�) =

�
1

2��2

�N=2
exp

(
1

2�2

NX
t=1

[y(t)� T (t)� f(t)]
2

)
(20{54)

The quadratic form is

Q(�k; 
j) �
NX
t=1

2
4yt � rX

j=1


jTj �
mX
k=1

�kGk(t)

3
5
2

(20{55)

where, in the seasonal adjustment problem, m = 12 and

f�1; � � � ; �mg = fA0; A1; � � � ; A6; B1; B2; � � � ; B5g (20{56)

Likewise,

GK(t) =

�
cos k!t; for 0 � k � 6;

sin (k � 6)!t; for 7 � k � 12
(20{57)

But if we combine �; 
 into a single vector of dimension n = m+ r :

q � (� 
 ) (20{58)

Fk(t) =

�
Gk(t); for 1 � k � m;

Tk(t); for m+ 1 � k � n
(20{59)

The model is then in the form

y(t) =

mX
j=1

qjFj(t) + e(t) (20{60)

The data vector is

yi =

mX
j=1

qjFj(ti) + e(ti) (20{61)

or

y = Fq + e (20{62)
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where

Fij � Fj(ti) 1 � j � n 1 � i � N (20{63)

The \noise" values et = e(ti) have prior probability density

p(e1; � � � ; eN) =

p
detK

(2�)N=2
exp

�
�
1

2
eTKe

�
; (20{64)

where K�1 is the (N �N) noise prior covariance matrix. For \stationary white noise", it reduces

to

K�1 = �2 �ij ; 1 � i; j � N : (20{65)

Given K and the parameters fqjg, the sampling pdf for the data takes the form

p(y1; � � � ; yN jqKI) =

p
det(K)

(2�)N=2
exp

�
�
1

2
(y � Fy)TK(y � Fy)

�
(20{66)

Likewise, a very general form of joint prior pdf for the parameters is

p(A; � � � ; qmjI) =

p
det(L)

(2�)n=2
exp

�
�
1

2
(q � q0)

TL(q � q0)

�
(20{67)

where L�1 is the (n � n) prior covariance matrix and q0 the vector of prior estimates. Almost

always we shall take L to be diagonal:

Lij = �2j �ij ; 1 � i; j � n (20{68)

and q0 to be zero. But the general formulas without these simplifying assumptions are readily

found and programmed.

The joint posterior pdf for the parameters fqjg is then

p(qjyI) =
exp(�Q

2
)R

exp(�Q
2
) dA � � �dqn

(20{69)

where Q is the quadratic form

Q � (y � Fq)TK(y � Fq) + (q � q0)
TL(q � q0) (20{70)

which we may expand into eight terms:

Q = yTKy � yTKFq � qTFTKy + qTFTKFq + qTLq � qTLq0 � qT0 Lq + qT0 Lq0 (20{71)

We want to bring out the dependence on q by writing this in the form

Q = (q � q̂)TM(q � q̂) +Q0 (20{72)

where Q0 is independent of q. Writing this out and comparing with (20|71), we have
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M = FTKF + L ;

Mq̂ = FTKy + Lq0 ;

q̂TMq̂ + Q0 = yTKy + qT0 Lq0

: (20{73)

M , q̂, and Q0 are thus uniquely determined, because the equality of (20|71) and (20|72) must

be an identity in q:

q̂ = M�1
�
FTKy + Lq0

�
(20{74)

Q0 = yTKy + qT0 Lq0 � q̂TMq̂ (20{75)

The denominator of (20|69) is then found using ( ), with the �nal result

p(A; � � � ; qnjyKL) =

p
det(M)

(2�)n=2
exp

�
�
1

2
(q � q̂)TM(q � q̂)

�
(20{76)

The components A; � � � ; qm are the seasonal amplitudes we wish to estimate, while (qm+1; � � � ; qn)
are the trend nuisance parameters to be eliminated. From ( ) the marginal pdf we want is

p(A; � � � ; qm j yKL) =

Z
� � �

Z
dqm+1 � � �dqnp(A; � � �qnjyKL)

=

p
det(M)

(2�)n=2
(2�)(n�m)=2q

det(W )

exp

�
�
1

2
(u� û)TU(u� û)

�

=

p
det(U)

(2�)m=2
exp

�
�
1

2
(u� û)TU(u� û)

�
(20{77)

where U; V;W; u are de�ned by ( ), ( ), ( ). From the fact that they are normalized, we see that

det(M) = det(W )det(U) (20{78)

a remarkable theorem not at all obvious from ( ) and ( ) except in the case V = 0. This is another

good example of the power of probabilistic reasoning to prove purely mathematical theorems.

Thus, the most general solution consists, computationally, of a string of elementary matrix

operations and is readily programmed. To summarize the �nal computation rules:

K�1 is the N �N prior covariance matrix for the \noise".

L�1 is the n� n prior covariance matrix for the parameters.

F is the N � n matrix of model functions.

First, calculate the (n� n) matrix

M � FTKF + L (20{79)

and decompose it into block form representing the interesting and uninteresting subspaces:

M =

�
U0 V

V T W0

�
(20{80)
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Then calculate the (m�m) and (r� r) renormalized matrices

U � U0 � VW�1
0 V T (20{81)

W � W0 � V TU�1
0 V (20{82)

This much is determined by the de�nition of the model, and the computer can work all this out in

advance, before the data are known.

Now given y, the (N�1) data vector and q0, the (n�1) vector of prior estimates, the computer

should calculate the (n� 1) vector

q̂ = M�1
�
FTKy + Lq0

�
(20{83)

of \best" estimates of the parameters. Actually, the �rstm of them are the interesting ones wanted,

and the remaining r = n�m components are not needed unless one also wants an estimate of the

trend function. Then we can use the following result.

The inverse M�1 can be written in the same block form as M :

M�1 =

�
U�1 �U0VW

�1

�W0V
TU�1 W�1

�
(20{84)

where, analogous to U ,

W � W0 � V TU�1
0 V (20{85)

Then FT has the same block form with respect to its rows:

(FT )ji = (Gj(ti) Ti(ti) ) ;

1 � j � m;

1 � i � N;

(m+ 1) � K � n

(20{86)

where Gj(t) are the seasonal sinusoids and Tk(t) the trend functions.

Almost always, q0 = 0 and so the \interesting" seasonal amplitudes are given by

q̂ = RKy (20{87)

where R is the reduced (m�N) matrix

R � U�1G� U�1
0 VW�1T (20{88)

and U�1 is the joint posterior covariance matrix for the interesting parameters fA; � � � ; qmg. Note
that R and U�1 are determined by the model, so the computer can calculate them once and for all

before the data are available, and then use them for any number of data sets.

***************************** MUCH MORE TO COME! *********************


