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CHAPTER 30

MAXIMUM ENTROPY: MATRIX FORMULATION.

Back in Chapter 11, we saw how the principle of maximum entropy leads us to a general means of

assigning probabilities. From a theoretical standpoint, that discussion contained a fairly complete

treatment of the general formal properties of MAXENT distributions. But from a pragmatic

viewpoint, Chapter 11 was left incomplete, in a way that appears as soon as we try to apply the

formalism to real, nontrivial problems; we need more powerful mathematical tools.

There is a second point to be made: our MAXENT formalism contained as a special case the

standard Gibbs formalism of equilibrium statistical mechanics, via arguments very much shorter and

simpler than the \ergodic" approach of antiquity. In statistical mechanics, therefore, the MAXENT

principle is, at the very least, a useful pedagogical device, by which known results may be derived

more quickly. But, of course, the real test of any new principle in science is not its ability to

re{derive known results, but its ability to give new results, which could not be (or at least, had not

been) derived without it. But since we agree with standard formalism in all equilibrium problems,

the only place where new results are possible is in the extension to nonequilibrium problems, where

previously no general theory existed.y How is this extension to be made in our formalism?

It is one of the most satisfying things about this approach that both these needs { �nding a

mathematical technique for complicated problems, and setting up a general formalism for nonequi-

librium problems { are met by a single mathematical development. The basic mathematical facts

to be explained here were found long ago by John von Neumann [G�ottinger Nachrichten, 1927], but

their full signi�cance could be seen only after the MAXENT principle had been recognized, and

the re{interpretation of probability theory as extended logic had been developed.

Density Matrix Formulation

First, let us consider Statistical Mechanics in quantum theory. In Chapter 11 we have developed

a formalism in which the enumeration of the possible \states of nature" could take place simply

by listing all the stationary quantum states. In other words, quantities that are constants of the

motion are the only things that we have allowed ourselves to specify so far. Evidently, if we are

ever going to get to non{equilibrium theory, we have to generalize this to the case where we put

in information about things which are not constants of the motion, so something can happen when

we let the equations of motion take over. If we started out with the initial canonical probability

assignments of Chapter 11 and then solved the Schr�odinger equation for the time development, we

would �nd nothing at all happening. It would just sit there. Of course, that is as it ought to be

for the equilibrium case; but for the non{equilibrium case, we need a bit more.

Also, as just noted, even in the equilibrium case, we need to generalize this before we can

actually do the calculation for nontrivial physical problems, because in practice we don't have the

kind of information assumed above. The theory given so far presupposes an enumeration of the

exact energy levels in our system to start with. But in a realistic problem, we can't calculate these.

y The fundamental postulate of ergodic theory was that ensemble averages are equal to time averages.
It would follow that, in equilibrium problems where there is no time dependence, ensemble averages are
also equal to experimental values. Obviously, such a theory is helpless to deal with the time{dependent
nonequilibrium problems, where the very facts to be explained are that ensemble averages are not equal to
time averages; but they are still equal to experimental values.
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What we know is a Hamiltonian operator which, in the cases we can actually solve, can be split

into a term H0 which is big but simple and another term H1 which is complicated but small,

H = H0 +H1 (30{1)

Then we have to do some kind of perturbation theory in order to �nd approximate values for

the energy levels de�ned by the entire Hamiltonian. To �nd them exactly is a problem that we

haven't solved. It will happen in all nontrivial problems that H1 does not commute with H0. So

we have to learn how to generalize the mathematical machine so we can put in information about

quantities which don't commute with each other. We can't enumerate states of nature simply by

citing energy levels; in fact we don't even know the representation in which this would be possible.

For this reason, in any representation we can �nd, the relative phase of these quantum states has

to get into the picture even for equilibrium problems. The way to do this is to restate this theory

in terms of the density matrix.

First, let's recall our basic de�nition of the density matrix. This is perfectly standard material

which is in a hundred textbooks on quantum theory and statistical mechanics. Suppose we have

a state of knowledge about a system; and for the time being, don't worry about how we got this

state of knowledge. We just want to describe it. Our system contains n moving particles with

coordinates fx1(t); � � �xn(t)g, and in quantum theory we describe our state of knowledge about

them by a wave function, or \state vector"

	(x1 � � �xn)

But this describes the maximum amount of information permitted by quantum theory. In most

cases there are various states 	1;	2; : : : ; in which the system might be, and we don't know which

one it is. All we know is described by assigning some probability w1 to it being in state 	1. Now,

if we knew the system was in a de�nite quantum state 	i and we wanted to predict the value of

some physical quantity F like momentum or magnetization, we represent this by some Hermitian

operator Fop, whereupon the expectation of F in state 	 is, according to quantum theory,

hF ii =

Z
	�iFop	id� (30{2)

where
R
d� stands for an integration over all particle co{ordinates xi, and, if there are spin indices

si in the problem, for summation over all those. Now the 	i functions that we started with are

not necessarily orthogonal functions. They could be any old set of conceivable states of the system.

But each of them could be expanded in a complete orthogonal set. Let's say that uk are a complete

orthonormal set of functions in which we can expand any state of this system. For the moment, it

doesn't matter what states they are; just any set that we know is complete. We could expand 	i

in terms of those, getting some expansion coe�cients a
(i)

k
:

	i =
X
k

uka
(i)

k (30{3)

and then write

hF ii =

Z  X
k

uka
(i)

k

!�
Fop

0
@X

j

uja
(i)

j

1
A d�: (30{4)

Now the a�k and aj are constants which can be taken outside the integral,
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hF ii =
X
kj

a
�(i)

k a
(i)

j

Z
u�kFopujd� (30{5)

and the integral (or sum) Z
u�kFopujd� � Fkj (30{6)

de�nes the matrix elements Fkj of F in the uk representation, so that

hF ii =
X
kj

Fkja
(i)�

k a
(i)

j : (30{7)

The expectation of any quantity, if we are given the wave function 	i, is a quadratic form in these

matrix elements Fkj .

Now if we're in this �x where we don't know what the state is, the best expectation value we

can give you is not just one of these, but we have to average it also over these wi which represent

our uncertainty as to what the actual state is,

hF i =
X
i

wihF ii =
X
i

wi

X
jk

Fkja
(i)�

k a
(i)

j : (30{8)

Our expectation values are now double averages. Even if we know the exact quantum state,

there are still statistical things in quantum theory (or, to put it more cautiously, in the current

\Copenhagen" interpretation of that theory), which would allow us to give only expectations in

general. We're not even that well o�. We don't even know what the right state is, so we have to

average over the ignorance (wi) also.

When you have a thing like (30{8), the only thing you can possibly do with it is change the

order of summations and see what happens. Let us do that;

hF i =
X
jk

Fkj
X
i

wia
(i)�

k a
(i)

j

Now, de�ne a matrix � by X
i

wia
(i)�

k a
(i)

j = �jk (30{9)

then

hF i =
X
jk

Fkj�jk: (30{10)

The summation over j builds the matrix product F�; and then the summation over k is the sum

of the diagonal elements, which we call the trace. Or, we could have written the sum with � and F

interchanged. In this case we would now say the summation over k builds us the matrix product

�F , and then the summation over j gives the trace, so we could write this equally well as

hF i =
X
jk

Fkj�jk = Tr(F�) = Tr(�F ): (30{11)

This matrix � is, of course, called the density matrix , and you see that it is a Hermitian matrix,

��kj = �jk, or in matrix notation
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�y = �: (30{12)

The neat way to develop our quantum statistics, so the phases are taken into account automatically,

is in terms of the density matrix. From now on we will express expectations of any quantities we

want to talk about in the form (30{11). We started out with a problem of how you set up a

probability assignment which describes a certain state of knowledge; now we have the problem of

setting up a density matrix which describes a certain state of knowledge.

Take a speci�c case; suppose somebody measures the total magnetic moment of some spin

system and they give us a number M . We want to �nd a density matrix which describes what we

know about the spin system when we have just this number; or rather these three numbers, the

three components fMx;My;Mzg. At the very least we want the density matrix to satisfy

~M = h ~Mopi = Tr
�
� ~Mop

�
: (30{13)

In other words, if we give this density matrix to anybody else, and he tries to predict the moments

from the density matrix, he should be able to get back the numbers that were given to us, by fol-

lowing the usual rule for prediction in statistical mechanics. If he couldn't do that, then it wouldn't

make sense to say that the density matrix \contained" the given information fMx;My;Mzg.
y

In general, there are an in�nite number of density matrices which would all do this. Again,

we are faced with the problem of making a free choice of a density matrix, which is \honest" in

the sense that it doesn't assume things that we don't know, and spreads out the probability as

evenly as possible over all possibilities allowed by what we do know. We do this by maximizing

an entropy; but what is the appropriate entropy now? We started out in Chapter 11 with the

information entropy

SI = �
X
i

pi log pi

so, suppose we now take

SA = �
X
i

wi logwi (30{14)

and we might choose the density matrix which makes SA a maximum. But if we took that as our

measure of amount of uncertainty, we would be in big trouble. A sort of Gibbs paradox would show

up, as a consequence of the fact that the initial states 	i are not necessarily orthogonal to each

other. We can have 	1 and give it a probability w1; and to the state 	2 we give probability w2.

Now, let's make a continuous change in the problem such that 	1 ! 	2; our state of knowledge

shades continuously into: 	1 with a probability (w1 + w2). But nothing like that happens to SA.

In SA as 	2 ! 	1 the term w1 logw1 + w2 logw2 would have to be replaced suddenly by

(w1 + w2) log(w1 + w2):

If we took this quantity SA as the measure of uncertainty about the system, then you would have

this phenomenon of sudden discontinuities in our uncertainty when two wave functions became

exactly equal. But our intuitive state of knowledge has no discontinuity when we do that. It goes

y This is all we are doing when we choose � to satisfy (30{13); but for reasons we do not understand, this
step seems to cause major conceptual hangups for some, who think that we are \measuring an expectation
value". Of course, that just does not make sense; we are choosing a density matrix so that its expectation
agrees with the measurement.
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continuously from one case to another. That's one thing that would be wrong if we tried to use

this SA as a measure of uncertainty.

There's another thing that would be even worse, and perhaps easier to see. For a given density

matrix, there's no upper limit to the SA that we could get. If SA is going to be the thing that

counts, let's say we have 26 di�erent states, 	a to 	z . They all happen to be equal to 	1 but we

assign probabilities wa to wz to them. Now, of course, the summation

�

26X
a=1

wa logwa

over the alphabet (this notation is not quite consistent, but I think you see the point) { the

summation over all these terms could be a very large number. We can introduce thousands of

them. There would be no upper limit to the �
P

w logw we could get if we used this SA.

On the other hand, there's one property that is unique. SA has no upper bound, but it does

have a lower bound. SA for a given density matrix has an absolute minimum given by

SA � �Tr(� log�): (30{15)

There's one and only one way, in general, of setting up these states 	i and corresponding proba-

bilities wi so that this lower bound is reached. When we say \in general," we mean if there are no

degeneracies in the eigenvalues of �. The simple proof is given in many places, for example Jaynes

(1957b), but the reader should be able to work it out for himself.

Well, now what does log � mean? There's a theorem in matrix theory that says: if � commutes

with its Hermitian conjugate [��y = �y�], there is a matrix S such that the eigenvalues f�1; �2; � � �g

of � are displayed explicitly:

S�S�1 =

0
BB@
�1

�2
. . .

�n

1
CCA (30{16)

Since � is itself Hermitian, this necessary and su�cient condition is met, so we can always �nd some

similarity transformation which would have made it diagonal. Now, in the representation where �

is diagonal, then by log � we mean the diagonal matrix

log � =

0
BB@
log �1

log �2
. . .

log �n

1
CCA (30{17)

If we choose for our basis uk the particular set of functions 	i for which SA does reach its absolute

minimum value, then the diagonal elements of � are just the probabilities wi assigned to these

states. In other words, the choice of possible states 	i which makes SA a minimum for a given �,

is the one for which the probabilities wi are the eigenvalues of this matrix �.

If states 	1 and 	2 are not orthogonal and you tell me the system is in state 	1, then, of

course, the present Copenhagen interpretation says: the probability that, if I did a measurement,

I would actually �nd it in 	2, is not zero. It's the scalar product squared, j(	1;	2)j
2; sometimes

called a transition probability from one state to another. We are not writing down the probabilities
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of mutually exclusive events unless we choose our states 	i to be orthogonal, and that's just what

we do by making the choice that minimizes SA. I'm going to say now that the von Neumann

information entropy SI for a density matrix is this unique minimum value of SA:

SI � (SA)min = �Tr(� log�) = �
X

�i log �i (30{18)

which is just the Shannon entropy that we used in Chapter 11, now based on the eigenvalues �i of �.

For a system described by the density matrix �, (30{18) is the quantity that measures the e�ective

number of microstates in which the system might be. There are a number of other arguments why

you choose (30{18) rather than some other expressions that you could think of, and they are also

given in this previously mentioned paper.

Generality of the Formalism. This makes another point evident; we have been thinking in terms

of quantum theory, where the density matrix is a virtual necessity for any nontrivial calculation.

But since the entropy expressions are really the same, we can equally well consider any problem

with discrete probabilities fp1 � � �png which has nothing to do with quantum theory (they might

refer to a problem in economics), and de�ne a matrix with the pi down the main diagonal:

� =

0
BB@
p1

p2
. . .

pn

1
CCA (30{19)

Then everything we can do with the probabilities fp1 � � �png we can do as well with the matrix �.

If it is a help for any calculation, we are free to carry out similarity transformations and work with

�0 � S�S�1 (30{20)

which has o�{diagonal elements. Thus all the following formalism, developed originally for quantum

theory, can be used as well for any problem with discrete probabilities. The expectation of any

quantity fq1; q2; � � �g which we wrote before as hqi =
P

piqi, can now be written equally well as

hqi = Tr�q, where q is a vector with components qi. The only di�erence is that in quantum theory

it is generally the matrix �0 that we meet with �rst, and it may be a di�cult problem to �nd � from

it. In practice, we must resort usually to some approximation method, of which a perturbation

expansion is probably the best developed example.

So, from this point on we may interpret the equations either as referring to quantum theory,

or to general problems with discrete probabilities pi

Setting up the Formalism: Now, we are back at the same problem that we studied in Chapter

11, but the Fk are matrices, and the constraints are

hF ik = Tr(�Fk); k = 1; 2; : : : ; m: (30{21)

We are to �nd the density matrix that maximizes SI � �Tr� log � while agreeing with the conditions

(30{21). Now, the formal solution of this goes through in exactly the same way as we did in Chapter

11. You recall that our proof back then was based on the fact that when we have an ordinary discrete

probability distribution

nX
i=1

pi log pi �

nX
i=1

pi log ui (30{22)
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The inequality, given by J. Willard Gibbs (1902), becomes an equality if, and only if, pi = ui.

Now, we have a precisely similar situation here. You can prove that if � and � are any two density

matrices, there is an inequality

Tr (� log�) � Tr (� log �) (30{23)

with equality if and only if � = �. We'll leave this as an \exercise for the reader" to prove. The

argument goes through in much the same way that we did it before. The density matrix that

maximizes SI subject to these constraints is again given by

� =
1

Z(�1 : : :�m)
exp f��1F1 � � � � � �mFmg (30{24)

One would guess, of course, that it generalizes in some such way as this, but intuition would not

tell us whether the proper generalization was exactly this form. All the formal properties that we

noted in Chapter 11 follow from this distribution in just the same way that we gave before { with

one exception, arising from the fact that the Fk do not necessarily commute, which we'll get to

after we've developed our mathematics a little bit more.

Of course the number one must have expectation value of one

h1i = Tr(�1) = Tr(�): (30{25)

This is one more condition just like the one that
P

pi had to be equal to one. The normalizing

factor which will guarantee this, is evidently

Z(�1 : : :�m) = Tr exp f��1F1 � � � � � �mFmg (30{26)

which is the partition function that we used already in Chapter 9 to solve combinatorial problems.

Perhaps we ought to say a word about what is meant by the exponential of a matrix. If we

have a function of an ordinary number x that we can expand in a power series,

f(x) =

1X
n=0

anx
n; (30{27)

of course, there is nothing to stop us from de�ning the same function of a matrix M by the same

power series,

f(M) �

1X
n=0

anM
n: (30{28)

Then the question arises; does this converge to a de�nite matrix and if so does the resulting matrix

function f(M) have any useful properties? There is a theorem: if the original power series converged

for x equal to each of the eigenvalues of the matrix M , then the matrix power series is guaranteed

to converge to a de�nite matrix f(M). This is obvious from (30{17) if M can be diagonalized; but

it remains true for any square matrix. Now in particular the exponential function,

ex =

1X
n=0

xn

n!
(30{29)
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converges so well that it has in�nite radius of convergence and, therefore, the exponential of a

square matrix with �nite elements is guaranteed to exist and to be a well de�ned matrix.

The choosing of the �k is again something which we do in order to make the expectation values

agree with the given data. Again it's going to turn out that same formal relations hold when we

are talking matrices. Again we have to solve

hFki = �
@

@�k
logZ (30{30)

for the �k. But to prove that this is right, we have to give a mathematical argument that is a

little more involved than that needed to prove (11{43), because the di�erent Fk need not commute

with each other. It turns out that this argument is also fundamental to everything that we want

to discuss from now on, so let's take time out for it now.

Heims Perturbation Theory

We want to develop a general perturbation theory in which if there's a complicated problem we can

break it down into a simple problem plus a small change. We want to expand this density matrix

in powers of some small perturbation, and the perturbation theory we get for equilibrium will also

be exactly the one we need for our irreversible theory.

This was worked out in about 1959 by the writers', former student, Steve Heims. It appears

in his doctoral thesis (Stanford, 1962) and we published a condensed account of it in the appendix

to a paper on gyromagnetic e�ects [Revs. Mod. Physics 34, 143 (1962)]. You see we have always

the problem of evaluating exponentials of matrices. First, I would like to work out the well{known

perturbation expansion of this, then convert it into the Heims expansion for expectations. We have

a matrix A, and the matrix eA is something that we can calculate. That is simple; but the thing

we really want to calculate is

exp (A + something else)
or

eA+�B = eA

"
1 +

1X
n=1

�nSn

#
: (30{31)

We indicate that this something else is small by putting � in it and expanding in powers of �. You

see this is the typical situation we would have if we tried to evaluate a density matrix

� =
1

Z
exp f��1F1 � � � � � �mFmg : (30{32)

Some of these operators might be simple so we could evaluate their exponentials; then some others

might be complicated and not commute with the others, and they would mess up the whole problem.

At that point we would resort to approximations. To put it in general form, let's talk just A and

B for a while. Form a quantity

e�xA ex(A+�B)

where x is an ordinary number and by xA we mean the matrix in which every element is multiplied

by x. If �! 0, this goes into the unit matrix. But it isn't quite the unit matrix, if � > 0. But how

does it vary with x? Well, by starting at this power series de�nition of the exponential function,

you can convince yourself very quickly that the same rule of di�erentiating an exponential function

works even if a matrix is in the exponent. We have the option of writing it either way:
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d

dx
e�xA = �Ae�xA = �e�xAA: (30{33)

Therefore,
d

dx

h
e�xAex(A+�B)

i
= �e�xAAex(A+�B) + e�xA(A+ �B)ex(A+�B) (30{34)

Now two terms cancel, and � is just a number, so

d

dx

h
e�xA ex(A+�B)

i
= �e�xA B ex(A+�B): (30{35)

We can't pull that B outside because in general it doesn't commute with what is either to the left

of it or to the right of it. Now that we have di�erentiated this, let us integrate with respect to x

and get it back again:

Z x

0

d

dx1

h
e�x1Aex1(A+�B)

i
dx1 = e�xAex(A+�B) � 1

= �

Z x

0

e�x1ABex1(A+�B)dx1:

(30{36)

To clean this up, multiply both sides by exA from the left. We �nd

ex(a+�B) = exA
�
1 + �

Z x

0

e�x1ABex1(A+�B)dx1

�
: (30{37)

This is an integral equation which ex(A+�B) satis�es. Well now, if you have an integral equation,

you grind out perturbation solutions of it simply by iteration; that is, substituting the equation

into itself over and over again. The �rst iteration gives

ex(A+�B) = exA
�
1 + �

Z x

0

dx1e
�x1ABex1A

�
1 + �

Z x1

0

dx2e
�x2ABex2(A+�B)

��

= exA
�
1 + �

Z x

0

dx1e
�x1ABex1A + �2

Z x

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2(A+�B)

�
;

and by repeated substitution we get

eA+�B = eA
�
1 + �

Z 1

0

e�xABexAdx

+ �2
Z 1

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2A

+ �3
Z 1

0

dx1

Z x2

0

dx2

Z x2

0

dx3e
�x1ABe(x1�x2)ABe(x2�x3)ABex3A

+ � � �

�
:

(30{38)

We can keep playing this game as long as we please, and so this generates an in�nite series in

powers of �. Or, we can terminate (30{38) at any �nite number of terms, replace A by A + �B in
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the last exponent, and it is an exact equation. The exponential of any matrix is a well{behaved

thing, so we can put in any � we please { large or small { and the in�nite series is guaranteed to

converge to the right thing. Of course, if we have to take more than about two terms of the series,

then we'll be wound up in another bad calculation and this whole method will not be too useful.

Let's summarize this: we have found the power series expansion

eA+�B = eA

"
1 +

1X
n=1

�nSn

#
(30{39)

in which

S1 �

Z 1

0

e�xABexAdx (30{40)

S2 �

Z 1

0

dx1

Z x1

0

dx2e
�x1ABe(x1�x2)ABex2A (30{41)

and if we write

B(x) � e�xABexA (30{42)

the general order term is

Sn �

Z 1

0

dx1

Z x1

0

dx2 � � �

Z xn�1

0

dxnB(x1)B(x2) � � �B(xn): (30{43)

Now we have an \unperturbed" density matrix

�0 =
eA

Tr (eA)
(30{44)

and a \perturbed" one in which some kind of additional information is put in:

� =
eA+�B

Tr [eA+�B ]
(30{45)

How did this additional information a�ect our prediction of some quantity C? In the unperturbed

ensemble, any operator C has the expectation

hCi0 = Tr(�0C) (30{46)

and in the perturbed ensemble, it will be instead,

hCi = Tr(�C): (30{47)

And what we really want is a power series expansion of hCi. So let's write out the expansion we

would like to get; using (30{39),

hCi =
Tr
�
eA+�BC

�
Tr [eA+�B ]

=
Tr
�
eAC

�
+
P
1

n=1 �
nTr

�
eASnC

�
Tr (eA) +

P
1

n=1 �
nTr (eASn)

and divide by Tr
�
eA
�
to get, from (30{46),
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hCi =
hCi0 +

P
1

n=1 �
nhSnCi0

1 +
P
1

n=1 �
nhSni0

(30{48)

We now have everything reduced to expectations over the unperturbed distribution, which we

assumed was something simple that we could calculate. But still this is in a little messy form. We

have the ratio of two in�nite series, which we know are well{behaved. Both the numerator and

denominator series have in�nite radius of convergence. But, we would like to write this as a single

series over � and get rid of this denominator. If we can invert the power series for this denominator;

that is, �nd the coe�cients an in

1

1 +
P
1

n=1 �
nhSni0

= 1�

1X
n=1

an�
n ;

then we'll have it. This equation is the same as

1 =

 
1 +

1X
n=1

�nhSni0

! 
1�

1X
m=1

�mam

!

or, after careful manipulation of indices in the double sum,

1 = 1 +

1X
n=1

�n

"
hSni0 � an �

n�1X
k=1

hSki0an�k

#
:

Now since di�erent powers of � are linearly independent functions, if a power series in � is to vanish

identically (i.e., for all �), the coe�cients of each term must be zero separately. So, the problem is:

choose the an so that

hSni0 = an +

n�1X
k=1

hSkioan�k : (30{49)

This is a discrete version of a Volterra integral equation, and is solved as follows. De�ne a sequence

of operators Qn,

Q1 � S1 (30{50)

Q2 � S2 � S1hQ1i0 (30{51)

Qn � Sn �

n�1X
k=1

SkhQn�ki0; n > 1 (30{52)

Taking the expectation of (30{52) and comparing with (30{49), we see that the desired solution is

just

an = hQni0; n � 1 (30{53)

Now, returning to (30{48) with this result, we have

hCi =

"
hCi0 +

1X
k=1

�khSkCi0

#"
1�

1X
m=1

�mhQmi0

#
: (30{54)



3012 30: Heims Perturbation Theory 3012

In expanding this, note that the double sum can be written as

1X
k=1

1X
m=1

�k+mhSkCi0hQmi0 =

1X
n=2

�n
n�1X
k=1

hSkCi0hQn�ki0 (30{55)

and we might as well add the term with n = 1, since it vanishes anyway, having no terms at all.

So, we have

hCi = hCi0 +

1X
n=1

�n

"
hSnCi0 �

n�1X
k=1

hSkCi0hQn�ki0 � hQni0hCi0

#
(30{56)

and, comparing with (30{52), we get a pleasant surprise; a simple �nal result:

hCi � hCi0 =

1X
k=1

�n [hQnCi0 � hQni0hCi0] : (30{57)

The n'th order contribution to the change [(hCi � hCi0)] is just the covariance, in the unperturbed

ensemble, of Qn with C. The �rst{order term in (30{57) has long been known; to the best of my

knowledge, Steve Heims was the �rst person to see that it can be extended to all orders. In several

years of living with this formula, and seeing what it can do for us, I have come to regard it as

easily the most important general rule of statistical mechanics; almost every \useful" calculation

in the �eld can be seen as a special case of it. Also, outside of statistical mechanics, almost

every nontrivial application of MAXENT will be a special case of (30{57). So, this is the general

perturbation expansion that we'll use.

Reciprocity Theorems: Now, the �rst order correction of course is always the most important

one. The �rst order term has a symmetry property which follows from the cyclic property of the

trace, Eq. (30{11). To �rst order, since Q1 = S1, we have simply

hCi = hCi0 = � [hS1Ci0 � hS1i0hCi0] (30{58)

but

S1 �

Z 1

0

e�xABexAdx

so that

hS1i0 =

Z 1

0

dxhe�xABexAi =

R 1
0
dxTr

�
e(1�x)ABexA

�
Tr (eA)

: (30{59)

Now, as in (30{11), it is true generally that Tr(FG) = Tr(GF ) even if FG 6= GF ; and so

hS1i0 =

R 1
0
dxTr

�
exAe(1�x)AB

�
Tr (eA)

=
Tr
�
eAB

�
Tr (eA)

= hBi0; (30{60)

so the �rst{order correction always reduces to

hCi � hCi0 = �

�Z 1

0

dxhe�xABexACi0 � hBi0hCi0

�
: (30{61)
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At this point, we can verify Eq. (30{30). Make the choices A = ��1F1�� � ���mFm, �B = ���kFk.

Then S(�1 : : :�m) = Tr
�
eA
�
and from the de�nition of a derivative,

@ logZ

@�k
=

1

Z
lim

��k!0

Z [�1 : : :�k + ��k : : :�m]� Z [�1 : : :�k : : :�m]

��k
: (30{62)

In the limit ��k ! 0, only the �rst-order term survives, and so

@ logZ

@�k
=

Tr
�
eAS1

�
Z��k

=
hS1i0

��k
= �hFki0: (30{63)

This is just (30{30).

Now we note a very important symmetry property; if we interchange B and C in the right-hand

side of (30{70), we don't change it. The last term we have worked into a form where it is obvious.

We still have to play with the �rst one a little. Again, let's write this as a ratio of two traces.Z 1

0

dxhe�xABexACi0 =

R 1
0
dxTr

�
e(1�x)ABexAC

�
Tr (eA)

(30{64)

This time we choose to interchange matrices as follows,

Z 1

0

dxTre(1�x)ABexAC =

Z 1

0

dxTr
h
exACe(1�x)AB

i
: (30{65)

Now for any f(x), we have Z 1

0

f(x)dx =

Z 1

0

f(1� x)dx (30{66)

consequently we can write (30{70) as

Z 1

0

dxTr
h
e(1�x)ACexAB

i
; (30{67)

and writing this back as an expectation

Z 1

0

dxhe�xABexACi0 =

Z 1

0

dxhe�xACexABi0: (30{68)

After all this, the only thing that has happened is that we have interchanged B and C.

Now this is a very important symmetry property. If I perturb my density matrix by adding

information about B and calculating how that changes my prediction of C, it is the same as if I had

perturbed my density matrix by putting in information about C and calculated how that changes

the prediction of B. A whole string of reciprocity laws, found originally by physical reasoning

in many di�erent contexts, all come out of the single formula (30{68). These include not only

the Onsager reciprocity laws in nonequilibrium statistical mechanics, but the Gibbs{Helmholtz

equation for the voltage of a reversible electric cell in equilibrium theory; and even the Helmholtz

reciprocity theorem in acoustics, and the Lorentz reciprocity law in electromagnetic theory, which

are not ordinarily thought of as arising from statistical mechanics at all.

************************* MORE TO COME! *****************************


